Circulation research
-
Circulation research · Apr 1999
Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin.
Cardiac hypertrophy is the fundamental adaptation of the adult heart to mechanical load. Recent work has shown that inhibition of calcineurin activity with cyclosporine suppresses the development of hypertrophy in calcineurin transgenic mice and in in vitro systems of neonatal rat cardiocytes stimulated with peptide growth factors. To test the hypothesis that the calcineurin signaling pathway is critical for load-induced hypertrophy in vivo, we examined the effects of cyclosporine treatment on left ventricular hypertrophy induced by experimental ascending aortic stenosis for 4 weeks in mice. ⋯ Levels of calcineurin activity were similar in the spleens of control and untreated aortic stenosis mice. However, calcineurin activity was severely depressed in left ventricular tissue of untreated aortic stenosis mice compared with control mice and was further reduced by cyclosporine treatment. Thus, pathological hypertrophy and cardiac-restricted gene expression induced by pressure overload in vivo are not suppressed by treatment with cyclosporine and do not appear to depend on the elevation of left ventricular calcineurin activity.
-
Circulation research · Apr 1999
Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure.
Left ventricular hypertrophy (LVH) is a compensatory mechanism to cope with pressure overload. Recently, a calcineurin pathway mediating LVH and its prevention by cyclosporine was reported. We examined whether calcineurin mediates LVH due to pressure overload in mice. ⋯ In addition, LV function of mice was assessed at 48 hours after banding; LV ejection fraction measured with echocardiography was lower (P<0.05) in the cyclosporine-treated banded group (66+/-3.0%) than in the nontreatment banded group (79+/-1.5%), whereas LV systolic wall stresses were similar. Calcineurin phosphatase activity was depressed similarly in both cyclosporine-treated groups compared with both nontreatment groups. Thus, cyclosporine could attenuate, but not prevent, LVH at the expense of inhibiting an important compensatory mechanism in response to pressure overload, resulting in reduced LV wall stress and function and increased susceptibility to decompensation and heart failure.
-
Circulation research · Mar 1999
ReviewActivation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis.
Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules and engages diverse ligands relevant to distinct pathological processes. One class of RAGE ligands includes glycoxidation products, termed advanced glycation end products, which occur in diabetes, at sites of oxidant stress in tissues, and in renal failure and amyloidoses. RAGE also functions as a signal transduction receptor for amyloid beta peptide, known to accumulate in Alzheimer disease in both affected brain parenchyma and cerebral vasculature. ⋯ Amelioration of atherosclerosis in these diabetic/atherosclerotic animals by soluble RAGE occurred in the absence of changes in plasma lipids or glycemia, emphasizing the contribution of a lipid- and glycemia-independent mechanism(s) to atherogenesis, which we postulate to be interaction of RAGE with its ligands. Future studies using mice in which RAGE expression has been genetically manipulated and with selective low molecular weight RAGE inhibitors will be required to definitively assign a critical role for RAGE activation in diabetic vasculopathy. However, sustained receptor expression in a microenvironment with a plethora of ligand makes possible prolonged receptor stimulation, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders.
-
Circulation research · Oct 1998
Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia.
Angiopoietin-2 (Ang2) is a ligand for the endothelial cell tyrosine kinase receptor Tie2 and counteracts blood vessel maturation/stability mediated by angiopoietin-1 (Ang1), the other known ligand of Tie2. Using degenerate oligonucleotides and reverse transcriptase-polymerase chain reaction, we have screened bovine microvascular endothelial (BME), aortic, lymphatic, pulmonary artery, and transformed fetal aortic endothelial cells, as well as rat smooth muscle cells for Ang1 and Ang2 expression. ⋯ Ang2 also decreased (60% to 82%) BME cell Ang2 mRNA. mRNA levels for the Tie1 or Tie2 receptors were only slightly modulated under the conditions described above. These findings suggest that the angiogenic effect of a number of regulators may be achieved in part through the regulation of an autocrine loop of Ang2 activity in microvascular endothelial cells.
-
Circulation research · Oct 1998
Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1.
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis that stimulates proliferation, migration, and proteolytic activity of endothelial cells. Although the mitogenic activity of VEGF is endothelial cell specific, recent reports indicate VEGF is able to stimulate chemotaxis and tissue factor production in monocytes. VEGF-stimulated activity in monocytes is mediated by the VEGF receptor flt-1. ⋯ These data are the first to show a direct effect of VEGF on SMCs. SMC-derived MMPs may be an additional source of proteases to digest vascular basement membrane, which is a crucial step in the initial stage of angiogenesis. The MMPs may also contribute to SMC migration in angiogenesis and atherogenesis.