Circulation research
-
Circulation research · Jan 2019
Biography Historical ArticleCardiovascular Research by Leonardo da Vinci (1452-1519).
-
Circulation research · Oct 2018
Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts.
Aging is one of the most significant risk factors for cardiovascular diseases, and the incidence of myocardial ischemia increases dramatically with age. Some studies have reported that cardiosphere-derived cells (CDCs) could benefit the injured heart. Nevertheless, the convincing evidence on CDC-induced improvement of aging heart is still limited. ⋯ Together, these results indicate that CDCs do not improve heart function and systemic performances in aging mice.
-
Cardiovascular diseases are the most prominent maladies in aging societies. Indeed, aging promotes the structural and functional declines of both the heart and the blood circulation system. In this review, we revise the contribution of known longevity pathways to cardiovascular health and delineate the possibilities to interfere with them. ⋯ We present genetic models, pharmacological interventions, and dietary strategies that block, reduce, or enhance autophagy upon age-related cardiovascular deterioration. Caloric restriction or caloric restriction mimetics like metformin, spermidine, and rapamycin (all of which trigger autophagy) are among the most promising cardioprotective interventions during aging. We conclude that autophagy is a fundamental process to ensure cardiac and vascular health during aging and outline its putative therapeutic importance.
-
Circulation research · Jul 2018
Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions.
Hypoplastic left heart syndrome is a type of congenital heart disease characterized by underdevelopment of the left ventricle, outflow tract, and aorta. The condition is fatal if aggressive palliative operations are not undertaken, but even after the complete 3-staged surgical palliation, there is significant morbidity because of progressive and ultimately intractable right ventricular failure. For this reason, there is interest in developing novel therapies for the management of right ventricular dysfunction in patients with hypoplastic left heart syndrome. ⋯ Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of hypoplastic left heart syndrome and other forms of congenital heart disease. This article reviews the many stem cell types applied to congenital heart disease, their preclinical investigation and the mechanisms by which they might affect right ventricular dysfunction in patients with hypoplastic left heart syndrome, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with congenital heart disease.