Diabetes
-
One important mechanism whereby obesity-associated insulin resistance leads to VLDL overproduction is thought to be by the increased flux of free fatty acids (FFAs) from extrahepatic tissues to liver, which arises as a direct consequence of impaired insulin action in adipose tissue and skeletal muscle. The aim of the present study was to address whether direct measures of peripheral tissue insulin sensitivity with regard to FFAs and glucose in the fasting state are good predictors of postabsorptive VLDL triglyceride secretion rate (VLDL-TG ASR) in humans, independent of obesity. Eighteen healthy control subjects, after an overnight fast, underwent three studies 3 weeks apart, in random order. ⋯ The best multivariate model for VLDL-TG ASR (R(2) = 0.61, P = 0.0008) included BMI (P = 0.0008) and S(I) (P = 0.12, inversely correlated). VLDL-TG secretion is predicted by BMI, independently of direct measures of insulin sensitivity. The sensitivity to insulin's acute suppressive effect on plasma FFA levels during fasting is not an important determinant of postabsorptive VLDL-TG secretion in humans.
-
Obesity is associated with insulin resistance, particularly when body fat has a central distribution. However, insulin resistance also frequently occurs in apparently lean individuals. It has been proposed that these lean insulin-resistant individuals have greater amounts of body fat than lean insulin-sensitive subjects. ⋯ In line with these analyses, when LIS and LIR subjects were matched for subcutaneous fat area, age, and gender, they had similar leptin levels, whereas their intra-abdominal fat and insulin sensitivity remained different. Thus, accumulation of intra-abdominal fat correlates with insulin resistance, whereas subcutaneous fat deposition correlates with circulating leptin levels. We conclude that the concurrent increase in these two metabolically distinct fat compartments is a major explanation for the association between insulin resistance and elevated circulating leptin concentrations in lean and obese subjects.
-
Immortalized brown adipocyte cell lines have been generated from fetuses of mice deficient in the insulin-like growth factor I receptor gene (IGF-IR(-/-)), as well as from fetuses of wild-type mice (IGF-IR(+/+)). These cell lines maintained the expression of adipogenic- and thermogenic-differentiation markers and show a multilocular fat droplets phenotype. IGF-IR(-/-) brown adipocytes lacked IGF-IR protein expression; insulin receptor (IR) expression remained unchanged as compared with wild-type cells. ⋯ Finally, cells lacking IGF-IR showed a much lower association between IR or IRS-1 and phosphotyrosine phosphatase 1B (PTP1B) and also a decreased PTP1B activity upon insulin stimulation. However, PTP1B/Grb-2 association remained unchanged in both cell types, regardless of insulin stimulation. Data presented here provide strong evidence that IGF-IR--deficient brown adipocytes show an increased insulin sensitivity via IRS-1/Grb-2/MAPK, resulting in an increased mitogenesis in response to insulin.
-
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. ⋯ However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.
-
Impaired wound healing is a well-documented phenomenon in experimental and clinical diabetes. Experimental evidence suggests that a defect in vascular endothelial growth factor (VEGF) regulation might be associated with wound-healing disorders. We studied the involvement of lipid peroxidation in the pathogenesis of altered VEGF expression in diabetes-related healing deficit by using an incisional skin-wound model produced on the back of female diabetic C57BL/KsJ db+/ db+ mice and their normal (db+/+m) littermates. ⋯ Moreover, raxofelast treatment significantly reduced wound CD levels and increased the breaking strength of the wound. Lastly, the inhibition of lipid peroxidation restored the defect in VEGF expression during the process of skin repair in diabetic mice and normalized the VEGF wound content. The current study provides evidence that lipid peroxidation inhibition restores wound healing to nearly normal levels in experimental diabetes-impaired wounds and normalizes the defect in VEGF regulation associated with diabetes-induced skin-repair disorders.