Stem Cell Res Ther
-
The prevalence of renal fibrosis is higher in older than in younger individuals. Through paracrine activity, bone marrow mesenchymal stem cell-derived microvesicles (BM-MSC-MVs) influence the process of renal fibrosis. Differences in microRNA (miRNA) expression of BM-MSC-MVs that correlate with the age of the subjects and the correlation between miRNA expression and the process of renal fibrosis have not been established. The present study aimed to analyze differences in miRNA expression of BM-MSC-MVs between young or older rats and its influence on tumor growth factor-beta 1 (TGF-β1)-mediated epithelial-mesenchymal transition (EMT) of HK2 cells to explore the causes of renal fibrosis in aged tissues. ⋯ In older rats, the inhibitory effect of BM-MSC-MVs on TGF-β1-mediated HK2 cell EMT was weaker than that observed in younger rats. In addition, miR-133b-3p and miR-294, which were downregulated in BM-MSC-MVs of older rats, remarkably inhibited TGF-β1-mediated EMT in HK2 cells, suggesting that these may play a role in the fibrosis of aging renal tissues.
-
Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy. ⋯ We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy.
-
Conventionally cultured mouse bone marrow mesenchymal stromal cells (mBM-MSC) are a heterogeneous population that often initially contain contaminating haematopoietic cells. Variability in isolation methods, culture protocols and the lack of specific mBM MSC markers might explain this heterogeneity. The aim of this study is to optimise the isolation, culture conditions and selection of mBM-MSC. ⋯ By positive selection using a combination of antibodies to Sca-1, CD90 and PDGFRα and culturing in hypoxia, we have found a subpopulation of BM cells from C57Bl/6 mice with a CFU-F cloning efficiency of 1/4. To our knowledge these results represent the highest frequencies of mouse MSC cloning from C57Bl/6 mice yet reported.
-
Mesenchymal stem cells (MSCs) play a central role in the remediation of cell and tissue damage. Erythropoietin (EPO) may enhance the beneficial influence of MSCs during recovery from tissue and organ injuries. Microvesicles (MVs) released from MSCs contribute to the restoration of kidney damage. We studied the influence of EPO on MVs derived from MSCs, and the protective effects of these factors in subjects with chronic kidney disease (CKD). ⋯ There was a dose-dependent increase in the level of EPO-MVs within the range of 1-100 IU/ml EPO. Although both MSC-MVs and EPO-MVs protect the kidney from fibrosis-related damage, there is a superior effect of EPO-MVs.
-
Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs. ⋯ Transplantation of hypoxia-preconditioned MSCs exerted better therapeutic effects in bleomycin-induced pulmonary fibrotic mice and enhanced the survival rate of engrafted MSCs, partially due to the upregulation of hepatocyte growth factor.