Stem Cell Res Ther
-
Comparative Study
Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury.
Adipose-derived stem cells (ASCs) have emerged as important regulators of inflammatory/immune responses in vitro and in vivo and represent attractive candidates for cell-based therapies for diseases that involve excessive inflammation. Acute lung injury (ALI) is an inflammatory condition for which treatment is mainly supportive due to lack of effective therapies. In this study, the therapeutic effects of ASC-based therapy were assessed in vivo by comparison of the anti-inflammatory properties of both human and murine ASCs in a mouse model of lipopolysaccharide (LPS)-induced ALI. ⋯ Treatment with hASCs or mASCs significantly attenuated LPS-induced acute lung injury in mice. These results suggest a potential benefit for using an ASC-based therapy to treat clinical ALI and may possibly prevent the development of acute respiratory distress syndrome (ARDS).
-
Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. ⋯ Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.
-
This study tested the hypothesis that cyclosporine (CsA)-supported syngeneic adipose-derived mesenchymal stem cell (ADMSC) therapy offered superior attenuation of acute ischemia-reperfusion (IR) kidney injury to either therapy alone. ⋯ Combination therapy using CsA plus ADMSCs offers improved protection against acute IR kidney injury.
-
Comment
Cell therapy demonstrates promise for acute respiratory distress syndrome - but which cell is best?
Acute respiratory distress syndrome (ARDS) constitutes a spectrum of increasingly severe acute respiratory failure and is the leading cause of death and disability in the critically ill. There are no therapies for ARDS, and management remains supportive. Cell therapy, particularly with allogeneic mesenchymal stem/stromal cells (MSCs), has emerged as a promising therapeutic strategy for ARDS, favorably modulating the immune response to reduce lung injury, while facilitating lung regeneration and repair. In this issue of the journal, Rojas and colleagues provide us with a rationale to consider autologous bone marrow-mononuclear cells as an alternative to MSCs for this devastating disease.
-
We tested the hypothesis that apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) are superior to healthy (H)-ADMSC in attenuating cecal ligation puncture (CLP)-induced sepsis-mediated lung and kidney injuries. ⋯ A-ADMSC therapy was superior to H-ADMSC therapy in protecting major organs from damage in rats with CLP-induced sepsis syndrome.