Adv Exp Med Biol
-
Lung cancer is a heterogeneous, complex, and challenging disease to treat. With the arrival of genotyping and genomic profiling, our simple binary division of lung cancer into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) is no longer acceptable. In the past decade and with the advent of personalized medicine, multiple advances have been made in understanding the underlying biology and molecular mechanisms of lung cancer. ⋯ Personalization of therapy will involve close collaboration between the laboratory and the clinic. Given the heterogeneity and complexity of lung cancer treatment with respect to histology, tumor stage, and genomic characterization, mind mapping has been developed as one of many tools which can assist physicians in this era of personalized medicine. We attempt to utilize the above tool throughout this chapter, while reviewing lung cancer epidemiology, lung cancer treatment, and the genomic characterization of lung cancer.
-
Incidence of skin tumors is increasing among elderly patients, and the multi-morbidities which occur in the elderly are a great challenge for dermatologists. Basis of every treatment of skin cancer patients is a reliable diagnosis. Therefore, histopathology serves as the gold standard in clinical dermatooncology and dermatologic surgery. This chapter provides a comprehensive review on the main types of melanoma and nonmelanoma skin cancers, including precursor lesions.
-
In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342-7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495-1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. ⋯ Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress. There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.
-
TrkB is the cognate receptor for brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family involved in neuronal survival, neurogenesis and synaptic plasticity. BDNF has been shown to protect photoreceptors from light-induced retinal degeneration (LIRD) and to improve ganglion cell survival following optic nerve damage. However, the utility of BDNF as a retinal neuroprotectant is limited by its short half-life, inability to cross the blood-brain and blood-retinal barriers, and activation of the proapoptotic p75 neurotrophin receptor. ⋯ The compound can pass the blood-brain and blood-retinal barriers when administered systemically and reduces kainic acid-induced neuronal cell death in a TrkB-dependent manner. Systemic administration of HIOC mitigates LIRD, assessed electrophysiologically and morphometrically. Hence, NAS may function as an endogenous circadian neurotrophin-like compound and HIOC is a good lead compound for further drug development for treatment of retinal degenerative diseases.