Indian J Med Res
-
Background & objectives Given the importance of the role of hypoxia induced pathway in different cancers including head-and-neck squamous cell carcinoma (HNSCC), this study delved into elucidating the molecular mechanism of hypoxia-inducible factor-1α (HIF1α) activation in HNSCC. Additionally, it analyzes the alterations of its regulatory genes [von Hippel-Lindau (VHL) and LIM domain containing 1 (LIMD1)] and target gene vascular endothelial growth factor (VEGF) in head-and-neck lesions at different clinical stages in relation with human papillomavirus (HPV) infection. Methods Global mRNA expression profiles of HIF1α, VHL, LIMD1 and VEGF were evaluated from public datasets of HNSCC, followed by validation of their expression (mRNA/protein) in an independent set of HPV+ve/-ve HNSCC samples of different clinical stages. ⋯ The methylation pattern of VHL and LIMD1 promoters in the basal/parabasal layers of normal epithelium correlated with their expression, exhibiting a gradual increase with the progression of HNSCC. The H/M expression of HIF1α/VEGF proteins and reduced VHL expression was associated with poor clinical outcomes. Interpretation & conclusions The results of this study showed differential regulation of the LIMD1-VHL-HIF1α pathway in HPV positive and negative HNSCC samples, illustrating the molecular distinctiveness of these two groups.
-
Background & objectives Isolation of functional pancreatic islets for diabetes research and clinical islet transplantation stands as a big challenge despite the advancements in the field. In this context, the non-availability of human/animal tissues is one of the major impediments to islet-based research, which has tremendous scope for translation. The current study explores the feasibility of using the bovine pancreas as an alternative source to isolate pancreatic islets and assess its functionality for in vitro studies. ⋯ Interpretation & conclusions The isolation procedure described in this study yielded viable islets for in vitro studies which showed a differential response to glucose challenge, confirming their viability. We provide a simple and reproducible method for small-scale isolation of functional islets from the bovine pancreas. This model proffers the beginner a hands-on in islet experiments and helps to re-iterate the process that could be extrapolated to other pancreatic tissues as well as to expand on diabetes research.