J Transl Med
-
Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive computational models that may be used in clinic practice. ⋯ The results confirm the potential of the Systems Medicine approach to study complex diseases and generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific proposals to overcome them.
-
Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. ⋯ The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.
-
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway obstruction and airflow imitation and pose a huge burden to society. These obstructive lung diseases impact the lung physiology across multiple biological scales. Environmental stimuli are introduced via inhalation at the organ scale, and consequently impact upon the tissue, cellular and sub-cellular scale by triggering signaling pathways. ⋯ Here we review the currentstate-of-the-art in techniques developed for pulmonary image analysis, development of structural models of therespiratory system and predictions of function within these models. We discuss application of modeling techniques to obstructive lung diseases, namely asthma and emphysema and the use of models to predict response to therapy. Finally we introduce a large European project, AirPROM that is developing multiscale models toinvestigate structure-function relationships in asthma and COPD.
-
Patients with pulmonary arterial hypertension (PAH) are treated with vasodilators, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 (PDE-5) inhibitors, soluble guanylyl cyclase activators, and prostacyclin. Despite recent advances in pharmacotherapy for individuals with PAH, morbidity and mortality rates in this patient population remain unacceptably high. Here, we tested the hypothesis that combination therapy with two PAH drugs that target distinct biochemical pathways will provide superior efficacy relative to monotherapy in the rat SU5416 plus hypoxia (SU-Hx) model of severe angioproliferative PAH, which closely mimics the human condition. ⋯ Combined therapy with two vasodilators that are approved for the treatment of human PAH provides unprecedented efficacy in the rat SU-Hx preclinical model of severe, angioproliferative PAH.