J Transl Med
-
Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. ⋯ It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
-
Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics. ⋯ The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.
-
Chronic Obstructive Pulmonary Disease (COPD) is a major challenge for healthcare. Heterogeneities in clinical manifestations and in disease progression are relevant traits in COPD with impact on patient management and prognosis. It is hypothesized that COPD heterogeneity results from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering. ⋯ The project demonstrated the high potential of a systems medicine approach to address COPD heterogeneity. Limiting factors for the project development were identified. They were relevant to shape strategies fostering 4P Medicine for chronic patients. The concept of Digital Health Framework and the proposed roadmap for its deployment constituted relevant project outcomes.
-
Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive computational models that may be used in clinic practice. ⋯ The results confirm the potential of the Systems Medicine approach to study complex diseases and generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific proposals to overcome them.
-
Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. ⋯ The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.