Trials
-
Currently, there are no approved treatments for early disease stages of COVID-19 and few strategies to prevent disease progression after infection with SARS-CoV-2. The objective of this study is to evaluate the safety and efficacy of convalescent plasma (CP) or camostat mesylate administered within 72 h of diagnosis of SARS-CoV-2 infection in adult individuals with pre-existing risk factors at higher risk of getting seriously ill with COVID-19. Camostat mesylate acts as an inhibitor of the host cell serine protease TMPRSS2 and prevents the virus from entering the cell. CP represents another antiviral strategy in terms of passive immunization. The working hypothesis to be tested in the RES-Q-HR study is that the early use of CP or camostat mesylate reduces the likelihood of disease progression to (modified) WHO stages 4b-8 in SARS-CoV-2-positive adult patients at high risk of moderate or severe COVID-19 progression.
-
The SARS-CoV-2 outbreak has resulted in a tremendous increase in hospital and intensive care unit (ICU) admissions all over the world. Patients with severe coronavirus disease 2019 (COVID-19) warranting ICU treatment usually have prolonged mechanical ventilation and are expected to be prone to develop psychological impairments, such as post-traumatic stress disorder (PTSD), anxiety and depression, which negatively impact quality of life. To date, no effective treatment strategy is available. In the current trial, we aim to assess the effect of an ICU-specific virtual reality (ICU-VR) intervention on psychological well-being and quality of life after COVID-19 ICU treatment. ⋯ Currently, an effective treatment for psychological sequelae after ICU treatment for specific illnesses is unavailable. Results from this study will provide insight whether virtual reality is a modality that can be used in ICU aftercare to improve psychological well-being and quality of life, or satisfaction, after ICU treatment for specific illnesses such as COVID-19.
-
Thoracic epidural analgesia is considered the gold standard for pain relief in video-assisted thoracoscopic surgery. This neuraxial technique blocks pain sensation by injecting a local anesthetic agent in the epidural space near the spinal cord to block spinal nerve roots. Recently, the erector spinae plane block has been introduced as a practical alternative to the thoracic epidural. This interfascial regional anesthesia technique interrupts pain sensation by injecting a local anesthetic agent in between the muscular layers of the thoracic wall. Several case series and three RCTs described it as an effective pain management technique in video-assisted thoracoscopic surgery (Scimia et al., Reg Anesth Pain Med 42:537, 2017; Adhikary et al., Indian J Anaesth 62:75-8, 2018; Kim, A randomized controlled trial comparing continuous erector spinae plane block with thoracic epidural analgesia for postoperative pain management in video-assisted thoracic surgery, n.d.; Yao et al., J Clin Anesth 63:109783, 2020; Ciftci et al., J Cardiothorac Vasc Anesth 34:444-9, 2020). The objective of this study is to test the hypothesis that a continuous erector spinae plane block incorporated into an opioid-based systemic multimodal analgesia regimen is non-inferior in terms of the quality of postoperative recovery compared to continuous thoracic epidural local anesthetic-opioid analgesia in patients undergoing elective unilateral video-assisted thoracoscopic surgery. ⋯ This randomized controlled trial aims to confirm whether continuous erector spinae plane block plus patient-controlled opioid analgesia can equal the analgesic effect of a thoracic epidural local anesthetic-opioid infusion in patients undergoing video-assisted thoracoscopic surgery.
-
The aim of this trial is to evaluate the antiviral efficacy, clinical efficacy, and safety of nelfinavir in patients with asymptomatic and mild COVID-19.
-
The primary objective is to demonstrate that, in patients with PCR-confirmed SARS-CoV-2 resulting in Acute Respiratory Distress Syndrome (ARDS), administration of 120mg/kg of body weight of intravenous Prolastin®(plasma-purified alpha-1 antitrypsin) reduces circulating plasma levels of interleukin-6 (IL-6). Secondary objectives are to determine the effects of intravenous Prolastin® on important clinical outcomes including the incidence of adverse events (AEs) and serious adverse events (SAEs).