Bmc Genomics
-
Comparative Study
Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes.
Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. ⋯ The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.
-
The Stanley Medical Research Institute online genomics database (SMRIDB) is a comprehensive web-based system for understanding the genetic effects of human brain disease (i.e. bipolar, schizophrenia, and depression). This database contains fully annotated clinical metadata and gene expression patterns generated within 12 controlled studies across 6 different microarray platforms. ⋯ The combination of database content, structure, and query speed offers researchers an efficient tool for data mining of brain disease complete with information such as: cross-platform comparisons, biomarkers elucidation for target discovery, and lifestyle/demographic associations to brain diseases.
-
DNA microarrays are rapidly becoming a fundamental tool in discovery-based genomic and biomedical research. However, the reliability of the microarray results is being challenged due to the existence of different technologies and non-standard methods of data analysis and interpretation. In the absence of a "gold standard"/"reference method" for the gene expression measurements, studies evaluating and comparing the performance of various microarray platforms have often yielded subjective and conflicting conclusions. To address this issue we have conducted a large scale TaqMan Gene Expression Assay based real-time PCR experiment and used this data set as the reference to evaluate the performance of two representative commercial microarray platforms. ⋯ Our study provides one of the largest "reference" data set of gene expression measurements using TaqMan Gene Expression Assay based real-time PCR technology. This data set allowed us to use an alternative gene expression technology to evaluate the performance of different microarray platforms. We conclude that microarrays are indeed invaluable discovery tools with acceptable reliability for genome-wide gene expression screening, though validation of putative changes in gene expression remains advisable. Our study also characterizes the limitations of microarrays; understanding these limitations will enable researchers to more effectively evaluate microarray results in a more cautious and appropriate manner.