Gastroenterology
-
Hepatocellular carcinoma is the third leading cause of cancer mortality worldwide; current chemotherapeutic interventions for this disease are largely ineffective. The retinoblastoma tumor suppressor (RB) is functionally inactivated at relatively high frequency in hepatocellular carcinoma and hepatoma cell lines. Here, we analyzed the ability of CDK4/6 inhibition to inhibit hepatocyte proliferation and the effect of RB status on this process. ⋯ These data show that CDK4/6 inhibition is a potent mediator of cytostasis and that RB loss can be readily compensated for in the context of both hepatoma cell lines and liver tissue.
-
The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium. ⋯ Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype.
-
Glucose-dependent insulinotropic polypeptide (GIP) and the proglucagon product glucagon-like peptide-1 (GLP-1) are gastrointestinal hormones that are released in response to nutrient intake and promote insulin secretion. Interestingly, a subset of enteroendocrine cells express both GIP and GLP-1. We sought to determine whether GIP also might be co-expressed with proglucagon in pancreatic alpha-cells. ⋯ GIP is expressed in and secreted from pancreatic islets; in alpha-cells, PC2 processes proGIP to yield a truncated but bioactive form of GIP that differs from the PC1/3-derived form from K-cells. Islet-derived GIP promotes islet glucose competence and also could support islet development and/or survival.