Clin Cancer Res
-
Dolastatin (DOLA)-10 is a pentapeptide isolated from the mollusc Dolabella auricularia with clinically promising antitumor activity documented in various in vitro and in vivo tumor models. The objectives of this Phase I study were to determine the maximum tolerated dose, evaluate toxic effects, and document any antitumor activity of this novel agent. Using an electrospray ionization mass spectroscopy system, we also characterized the clinical pharmacokinetics, pharmacodynamics, and metabolism of DOLA-10. ⋯ Unlike the in vitro studies of DOLA-10, the principal metabolite detected was an N-demethyl derivative, confirmed by mass spectroscopy. In all five subjects, the concentration of this metabolite never exceeded 2% of the simultaneously measured parent drug concentration. The available preclinical, pharmacological, and clinical data suggest that further study of escalated DOLA-10 dosing with cytokine support is warranted.
-
The objective of this study was to determine the influence of pleural and ascitic fluid on the pharmacokinetics of the antitumor camptothecin derivative topotecan. Four patients with histological proof of malignant solid tumor received topotecan (0.45 or 1.5 mg/m2) p.o. on several occasions in both the presence and absence of third space volumes. Serial plasma and pleural or ascitic fluid samples were collected during each dosing and analyzed by high-performance liquid chromatography for both the intact lactone form of topotecan and its ring-opened carboxylate form. ⋯ Topotecan penetration into pleural and ascitic fluid demonstrated a mean lag time of 1.61 h (range, 1.37-1.86 h), and ratios with plasma concentration increased with time after dosing in all patients. The mean ratio of third space topotecan total drug area under the concentration-time curve to that in plasma was 0.55 (range, 0.26-0.87). These data indicate that topotecan can be safely administered to patients with pleural effusions or ascites and that there is substantial penetration of topotecan into these third spaces, which may prove beneficial for local antitumor effects.
-
Pretreatment of tumor cells with the protein kinase C (PKC) inhibitor bryostatin-1 enhances the cytotoxicity of most chemotherapeutic agents. However, in the case of paclitaxel, this effect has been shown in vitro to be best achieved when bryostatin-1 follows (rather than precedes) paclitaxel treatment. With combination trials of bryostatin-1 and paclitaxel planned for clinical trials and with only in vitro data available regarding drug sequence, we elected to undertake an in vivo study evaluating the effect of sequential bryostatin-1 and paclitaxel in a tumor-bearing mouse model and to correlate this effect to cell cycle events, tumor metabolism, and tumor blood flow. ⋯ In vivo perfusion studies, using dynamic enhanced NMR imaging with gadolinium diethylenetriamine pentaacetic acid, also demonstrated decreased tumor blood flow. These studies suggest that the inhibition of tumor response to paclitaxel by bryostatin-1 is multifactorial and includes such diverse factors as inhibition of cell entry into mitosis, a decrease in pH and energy metabolism, and a decrease in tumor blood flow. These results indicate that, as this combination enters Phase I clinical trials, the sequence of paclitaxel followed by bryostatin-1 will be critical in the clinical trial design.
-
In anticipation of an initial clinical Phase I trial in patients with high-grade gliomas of p.o. administered 5-iodo2-pyrimidinone-2'-deoxyribose (IPdR) given daily for 14 days as a prodrug for 5-iodo-2'-deoxyuridine (IUdR)-mediated tumor radiosensitization, we determined the systemic toxicities and the percentage IUdR-DNA incorporation in normal athymic mouse tissues and a human glioblastoma xenograft (U251) after this dosing schedule of IPdR. Using a tumor regrowth assay of s.c. U251 xenografts, we also compared radiosensitization with this IPdR-dosing schedule to radiation therapy (XRT) alone (2 Gy/day for 4 days) or to XRT after continuous infusion IUdR for 14 days at the maximum tolerated dose in mice (100 mg/kg/day). ⋯ We conclude that a 14-day p.o. schedule of IPdR at up to 1500 mg/kg/day results in no significant systemic toxicity in athymic mice and is associated with significant radiosensitization using this human glioblastoma multiforme xenograft model. Based on these data and our previously published data using shorter IPdR dosing schedules, which also demonstrate an improved therapeutic index for IPdR compared to IUdR, an initial clinical Phase I and pharmacokinetic study of p.o. IPdR daily for 14 days is being designed.