Int J Clin Exp Patho
-
Int J Clin Exp Patho · Jan 2013
Suppressing the malignant phenotypes of glioma cells by lentiviral delivery of small hairpin RNA targeting hypoxia-inducible factor-1α.
Hypoxic microenvironment of solid tumors is known to shape malignant phenotypes of cancer cells through the dimeric transcription factor hypoxia-inducible factor (HIF)-1. In the present study, the therapeutic effect of targeting α subunit of HIF-1 in glioma cells via lentiviral delivery of small hairpin RNA (shRNA) was evaluated. ⋯ Xenograft experiments in nude mice further showed that HIF-1α-shRNA inhibited tumor growth and caused persistent repression of HIF-1α and its target genes, including VEGF, GLUT1 and MMP2, up to 25 days post-inoculation. Taken together, lentiviral delivery of shRNA is a promising therapeutic approach for targeting HIF-1α in glioma.
-
Int J Clin Exp Patho · Jan 2013
IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT).
Severe asthma is a chronic airway disease characterized by the Th2/Th17-polarized inflammation along with permanent airway remodeling. Despite past extensive studies, the exact role for Th2 and Th17 cytokines in asthmatic pathoetiology, particularly in the pathogenesis of bronchial epithelial-mesenchymal transition (EMT), is yet to be fully addressed. We herein conducted studies in 16-HBE cells and demonstrated that Th2-derived IL-4 and Th17-derived IL-17A provide a chronic inflammatory milieu that favors TGF-β1 to induce bronchial EMT. ⋯ IL-4 and IL-17A synergized with TGF-β1 to induce epithelial cells re-entering cell cycle, and to promote epithelial to mesenchymal morphological transistion, and by which they enhanced the capacity of TGF-β1 to suppress E-cadherin expression, and to induce a-SMA expression in epithelial cells. Mechanistic studies revealed that this synergic action is coordinated by the regulation of ERK1/2 activity. Our results not only provide a novel insight into the understanding of the mechanisms underlying airway remodeling in asthmatic condition, but also have the potential for developing more effective therapeutic strategies against severe asthmatics in clinical settings.
-
Int J Clin Exp Patho · Jan 2013
Inhibition of GAP-43 by propentofylline in a rat model of neuropathic pain.
Neural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. The relation of growth-associated protein-43 (GAP-43), a protein involved in the nerve fiber growth and sprouting, to pain hypersensitivity has been investigated. Glial activation and inflammatory cytokines released by microglia and astrocytes are considered to be involved in the neural sprouting and plasticity. ⋯ Our results demonstrated that propentofylline could attenuate the CCI-induced mechanical allodynia and thermal hyperalgesia and inhibit the astrocyte activation and production of IL-1β. GAP-43 expression was also down-regulated by intrathecal propentofylline. These findings suggest that astrocyte activation is involved in the regulation of GAP-43 expression and propentofylline might be used in the treatment of neuropathic pain.
-
Int J Clin Exp Patho · Jan 2013
Involvement of GMRP1, a novel mediator of Akt pathway, in brain damage after intracerebral hemorrhage.
GMRP1, also known as BTBD10, has been reported to inhibit apoptosis of neuronal and islet beta cells via Akt pathway. The present study attempted to investigate whether GMRP1 and its mediated Akt pathway were involved in brain injury of rats after intracerebral hemorrhage (ICH). Rat models of ICH had been established successfully. ⋯ GMRP1 protein levels, as well as phosphorylations of Akt, significantly decreased in caudate nuclei of hemorrhagic side, compared with those of contralateral side at day 1, day 3 after ICH. Enhanced cell apoptosis was observed in hemorrhagic side by TUNEL assay. We presented here evidence that decreased GMRP1-mediated Akt pathway contributed to cell apoptosis in hemorrhagic side, suggesting that GMRP1 played an important role in brain damage after ICH.
-
Int J Clin Exp Patho · Jan 2013
Effects of glycyl-glutamine dipeptide supplementation on myocardial damage and cardiac function in rats after severe burn injury.
Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. ⋯ Compared with B group, the CK, LDH, AST and blood lactic acid levels reduced, myocardium ATP and GSH content increased in GG group. Moreover, the inhibition of cardiac contractile function and myocardial histopathological damage were reduced significantly in GG group. We conclude that myocardial histological structure and function were damaged significantly after burn injury, glycyl-glutamine dipeptide supplementation is beneficial to myocardial preservation by improving cardiocyte energy metabolism, increasing ATP and glutathione synthesis.