Bmc Musculoskel Dis
-
Bmc Musculoskel Dis · Jul 2013
Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: influence on degree of injury and recovery time.
The biological mechanisms involved in non-contact musculoskeletal soft tissue injuries (NCMSTI) are poorly understood. Genetic risk factors may be associated with susceptibility to injuries, and may exert marked influence on recovery times. ⋯ SNPs in the IGF2, CCL2, and ELN genes may be associated to the degree and recovery time of NCMSTI.
-
Bmc Musculoskel Dis · Jul 2013
Physical activities at work and risk of musculoskeletal pain and its consequences: protocol for a study with objective field measures among blue-collar workers.
Among blue-collar workers, high physical work demands are generally considered to be the main cause of musculoskeletal pain and work disability. However, current available research on this topic has been criticised for using self-reported data, cross-sectional design, insufficient adjustment for potential confounders, and inadequate follow-up on the recurrent and fluctuating pattern of musculoskeletal pain. Recent technological advances have provided possibilities for objective diurnal field measurements of physical activities and frequent follow-up on musculoskeletal pain.The main aim of this paper is to describe the background, design, methods, limitations and perspectives of the Danish Physical Activity cohort with Objective measurements (DPhacto) investigating the association between objectively measured physical activities capturing work and leisure time and frequent measurements of musculoskeletal pain among blue-collar workers. ⋯ This study will provide novel information on the association between physical activities at work and musculoskeletal pain. The study will provide valid and precise documentation about the relation between physical work activities and musculoskeletal pain and its consequences among blue-collar workers.
-
Bmc Musculoskel Dis · Jul 2013
Randomized Controlled TrialStrength Training for Arthritis Trial (START): design and rationale.
Muscle loss and fat gain contribute to the disability, pain, and morbidity associated with knee osteoarthritis (OA), and thigh muscle weakness is an independent and modifiable risk factor for it. However, while all published treatment guidelines recommend muscle strengthening exercise to combat loss of muscle mass and strength in knee OA patients, previous strength training studies either used intensities or loads below recommended levels for healthy adults or were generally short, lasting only 6 to 24 weeks. The efficacy of high-intensity strength training in improving OA symptoms, slowing progression, and affecting the underlying mechanisms has not been examined due to the unsubstantiated belief that it might exacerbate symptoms. We hypothesize that in addition to short-term clinical benefits, combining greater duration with high-intensity strength training will alter thigh composition sufficiently to attain long-term reductions in knee-joint forces, lower pain levels, decrease inflammatory cytokines, and slow OA progression. ⋯ Test-retest reliability for the thigh CT scan was: total thigh volume, intra-class correlation coefficients (ICC) = 0.99; total fat volume, ICC = 0.99, and total muscle volume, ICC = 0.99. ICC for both isokinetic concentric knee flexion and extension strength was 0.93, and for hip-abductor concentric strength was 0.99. The reliability of our 1RM testing was: leg press, ICC = 0.95; leg curl, ICC = 0.99; and leg extension, ICC = 0.98. Results of this trial will provide critically needed guidance for clinicians in a variety of health professions who prescribe and oversee treatment and prevention of OA-related complications. Given the prevalence and impact of OA and the widespread availability of this intervention, assessing the efficacy of optimal strength training has the potential for immediate and vital clinical impact.
-
Bmc Musculoskel Dis · Jun 2013
Study of surgical indication for knee arthroplasty by cartilage analysis in three compartments using data from Osteoarthritis Initiative (OAI).
Bicompartmental or unicompartmental knee arthroplasty (BKA, UKA) is currently advocated as an alternative solution to conventional total knee arthroplasty (TKA) in order to preserve bone stock and ligaments for limited osteoarthritis (OA) with intact anterior and posterior cruciate ligaments (ACL, PCL). However, the actual rate of UKA or BKA compared to TKA procedures in OA patients has not been reported. In this study, we retrospectively analyzed preoperative MRI of the knee in subjects who underwent knee arthroplasty and assessed the potential for UKA or BKA as an alternative treatment. ⋯ Many medial or lateral compartmental OA subjects, with or without patellar compartment defects have undergone TKA. The results of this study suggest the indication for partial arthroplasty, such as UKA or BKA, may increase when cartilage in each compartment, as well as ligaments and subchondral bone status are comprehensively evaluated.
-
Bmc Musculoskel Dis · Jun 2013
Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression- a finite element study.
The Dynesys system provides stability for destabilized spines while preserving segmental motion. However, clinical studies have demonstrated that the Dynesys system does not prevent adjacent segment disease. Moreover, biomechanical studies have revealed that the stiffness of the Dynesys system is comparable to rigid fixation. Our previous studies showed that adjusting the cord pretension of the Dynesys system alleviates stress on the adjacent level during flexion. We also demonstrated that altering the stiffness of Dynesys system spacers can alleviate stress on the adjacent level during extension of the intact spine. In the present study, we hypothesized that omitting the cord preload and changing the stiffness of the Dynesys system spacers would abate stress shielding on adjacent spinal segments. ⋯ The results reveals that removing the Dynesys system cord pretension attenuates the ROMs, disc stress, and facet joint contact forces at adjacent levels during flexion and axial rotation. Removing cord pretension together with softening spacers abates stress shielding for adjacent segment during four different moments, and it provides enough security while not jeopardizes the stability of spine during axial rotation.