Sports Med
-
While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (VO2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). ⋯ However, V(max) and T(max) have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.
-
Pain sensitivity has been found to be altered following exercise. A number of investigators have found diminished sensitivity to pain (hypoalgesia) during and following exercise. However, currently it is unknown whether there is a specific intensity of exercise that is required to produce this hypoalgesia response. ⋯ In addition, the interaction between exercise intensity and exercise duration, more than likely influences whether hypoalgesia occurs following exercise. There is a need for research to be conducted in which both intensity and duration of exercise are manipulated in a systematic manner to determine the 'optimal dose' of exercise that is required to produce hypoalgesia. In addition, there is a need for more research with other modes of exercise (e.g. resistance exercise, isometric exercise) to determine the optimal dose of exercise required to produce hypoalgesia.
-
This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. ⋯ Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport.
-
Pectoralis major injuries typically occur in active individuals participating in manual labour or sports. While these injuries are rarely reported, the actual incidence of pectoralis tears among all shoulder injuries is unknown. Diagnosis can usually be made based on a patient's history and physical examination. ⋯ Nonoperative management consisting of immobilisation and physical therapy can offer a functional result with return of shoulder motion and activities of daily living. In recent studies, operative repair of pectoralis major rupture has been shown to restore normal chest-wall muscle contours and pre-operative strength (even in competitive athletes). Although complications such as re-rupture, infection, and heterotopic ossification do occasionally occur, favourable results should be expected when surgical repair is performed either acutely or in a delayed fashion.
-
Exercise-induced or athletic menstrual dysfunction (amenorrhoea, oligomenorrhoea, anovulation, luteal phase deficiency, delayed menarche) is more common in active women and can significantly affect health and sport performance. Although athletic amenorrhoea represents the most extreme form of menstrual dysfunction, other forms can also result in suppressed estrogen levels and affect bone health and fertility. A number of factors, such as energy balance, exercise intensity and training practices, bodyweight and composition, disordered eating behaviours, and physical and emotional stress levels, may contribute to the development of athletic menstrual dysfunction. ⋯ Methods for helping the female athlete to reverse athletic menstrual dysfunction are discussed. The health consequences of trying to restrict energy intake too dramatically while training are also reviewed, as is the importance of screening athletes for disordered eating. Vitamins and minerals of greatest concern for the female athlete are addressed and recommendations for intake are given.