Endocrinology
-
High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. ⋯ However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance.
-
Vasomotor thermo-dysregulation (hot flashes) are an often debilitating symptom of menopause. Effective treatment is achieved primarily through activation of the estrogen receptor (ER)α with estrogens but is also associated with increased risk for breast and uterine cancer. In this study, we have tested novel compounds lacking the B ring of 17-hydroxy-β-estradiol (E2) (A-CD compounds) with differing ratios of ERα:ERβ binding affinities for the ability to reduce diurnal/nocturnal tail-skin temperatures (TSTs) in the ovariectomized female rat menopausal hot flash model. ⋯ E2 is rapidly metabolized to highly reactive quinones, and we show that L17 has 2-fold greater metabolic stability than E2. Finally, L17 and E2 similarly mediated induction of c-fos expression in neurons within the rat thermoregulatory hypothalamic median preoptic nucleus. Thus, the A-CD compound, L17, may represent a safe and effective approach to the treatment of menopausal hot flashes.
-
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. ⋯ IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling.
-
In the brain of medaka (Oryzias latipes), a teleost fish, we recently found that the supracommissural/posterior nuclei of the ventral telencephalic area (Vs/Vp) and the magnocellular/gigantocellular portions of the magnocellular preoptic nucleus (PMm/PMg) express estrogen receptor (ER) and androgen receptor (AR) specifically in females. This finding led us to postulate that sex steroid hormones might induce gene expression unique to females in these nuclei. In the present study, we searched for genes differentially expressed between the sexes in the medaka brain and identified the gene encoding neuropeptide B (npb) as being female-specifically expressed in Vs/Vp and PMm/PMg. ⋯ Subsequent analyses provided evidence that the female-specific expression of npb in Vs/Vp and PMm/PMg results from the reversible and transient action of estrogens secreted from the ovary and that this estrogenic action is most likely mediated by the direct transcriptional activation of npb through an estrogen-responsive element in its proximal promoter region. Vs/Vp and PMm/PMg are generally recognized in teleost fish as the sites where neurons expressing 2 other neuropeptides, isotocin and vasotocin, are present, but the female-specific npb/ER/AR-expressing neurons were distinct from, although adjacent to, isotocin and vasotocin neurons. Taken together, these data demonstrate that npb is female-specifically expressed in novel, as-yet undefined populations of Vs/Vp and PMm/PMg neurons, resulting from the direct stimulatory action of ovarian estrogens via female-specific ER in these neurons.