Neurochirurgie
-
Surgical resections for intractable epilepsy are generally associated with a high risk of permanent neurological deficit and a poor rate of seizure control. We present a series of 89 patients operated on from 1992 through 2007 for drug-resistant partial epilepsy, in whom surgery was performed in a functional area of the brain: the central (sensorimotor and supplementary motor areas) region in 48 cases, posterior regions (parietal and occipital) in 27, the insula in eight, and the language areas in six. Epilepsy was cryptogenic in 12 patients, and lesion-related in 77: malformation of cortical development in 43, tumor in 17, perinatal cicatrix in 13, vascular lesion in three, and another prenatal lesion in one. ⋯ With a one-year follow-up in 74 patients (mean, 3.6 years), 53 (72%) were in Engel's class I, including 38 (51%) in class IA. Seizure outcome was significantly associated with etiology: 93% of Taylor-type focal cortical dysplasia, whereas only 40% of cryptogenic epilepsies were in class I (p<0.05). This suggests that resective or disconnective surgery for intractable partial epilepsy in functional areas of the brain may be followed by excellent results on seizures and a moderate risk of permanent neurological sequelae.
-
We report here the results of the first survey on epilepsy surgery activity in France. Data from a questionnaire sent to 17 centers practicing epilepsy surgery were analyzed. All centers responded; however, all items were not completely documented. ⋯ Overall results obtained by epilepsy surgery centers were in the higher range of those reported in the literature, along with a low rate of major surgical complications. Growing interest for epilepsy surgery is clearly demonstrated in this survey and supports further development to better satisfy the population's needs, particularly children. Activity should be further evaluated, while existing epilepsy surgery centers as well as healthcare networks should be expanded.
-
Hemispheric disconnection has been largely proposed for patients with severe epilepsy associated with a congenital or acquired hemispheric cerebral pathology. The classical procedure of anatomical hemispherectomy was progressively abandoned by neurosurgeons in order to avoid postoperative complications since then hemispherotomy techniques have been developed. Globally, with hemispheric disconnection, the rate of patients becoming seizure-free has been between 50 and 80%. ⋯ Cerebral reorganization has been proved to exist in motor and language recovery. Ipsilateral corticospinal pathways seem to be involved in the movement of hemiplegic limbs. Everyday language can be supported by both hemispheres, but there is an early hemispheric specialization of the left hemisphere according to metaphonologic abilities.
-
Intraoperative imaging, in particular intraoperative MRI, is a developing area in neurosurgery and its role is currently being evaluated. Its role in epilepsy surgery has not been defined yet and its use has been limited. ⋯ As the integration of imaging and functional data plays an important role in the planning of epilepsy surgery, intraoperative verification of the surgical result may be highly valuable. Therefore, teams that have access to intraoperative MRI should be encouraged to use this technique prospectively to evaluate its current relevance in epilepsy surgery.
-
Surgery of partial epilepsies in childhood has largely benefited from the recent advances of imaging techniques, which carry a triple goal: (1) to contribute to the localization of the epilepsy onset zone, (2) to detect and delineate an underlying lesion, and (3) to study the spatial relationship between the epileptogenic zone and the neighboring functional cortex, in order to select patients and plan the resection. This noninvasive presurgical imaging workup must be compared to clinical and electrical data to estimate the postoperative prognosis, while invasive techniques such as SEEG, cortical stimulations, and IAT often remain indispensable in difficult cases, i.e., in cryptogenic epilepsies. ⋯ Multimodal imaging greatly enhances the sensitivity of all of these techniques. Finally, functional MRI of motor and language functions provide noninvasive cortical mapping of essential functions, using age-adapted paradigms, in cooperating children from age five to six and from IQs around 60.