Neurosurg Focus
-
Review Case Reports
Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained?
Authors of recent studies have championed the importance of maintaining cerebral perfusion pressure (CPP) to prevent secondary brain injury following traumatic head injury. Data from these studies have provided little information regarding outcome following severe head injury in patients with an intracranial pressure (ICP) greater than 40 mm Hg, however, in July 1997 the authors instituted a protocol for the management of severe head injury in patients with a Glasgow Coma Scale score lower than 9. The protocol was focused on resuscitation from acidosis, maintenance of a CPP greater than 60 mm Hg through whatever means necessary as well as elevation of the head of the bed, mannitol infusion, and ventriculostomy with cerebrospinal fluid drainage for control of ICP. ⋯ Data from this preliminary study indicate that intense, aggressive management of CPP can lead to good neurological outcomes despite extremely high ICP. Aggressive CPP therapy should be performed and maintained even though apparently lethal ICP levels may be present. Further study is needed to support these encouraging results.
-
Review
What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury?
Intensive care of the patient with traumatic brain injury centers on control of intracranial pressure and cerebral perfusion pressure (CPP). The optimal CPP by definition delivers an adequate supply of blood and oxygen to meet the metabolic demands of brain tissue. ⋯ No study that accurately assesses the efficacy of normal CPP compared with elevated CPP has been performed, but several studies demonstrate that a CPP threshold exists on an individual basis for patients with TBI. The use of brain monitors of cerebral metabolism and oxygen supply may assist the clinician in the selection of the optimal CPP for an individual patient.
-
Head injury is a major cause of death and disability in children. Despite advances in resuscitation, emergency care, intensive care monitoring, and clinical practices, there are few data demonstrating the predictive value of certain physiological variables regarding outcome in this patient population. Mean arterial blood pressure (MABP), intracranial pressure (ICP), and cerebral perfusion pressure (CPP = MABP - ICP) are routinely monitored in patients in many neurological intensive care units throughout the world, but there is little evidence indicating that advances in care have been matched with corresponding improvements in outcome. ⋯ Some medical management strategies can have detrimental effects, and there is now a good case for undertaking a controlled trial of immediate or delayed craniectomy. Independent outcome in children following severe head injury is associated with higher levels of CPP. The ability to tolerate different levels of CPP may be related to age, and therefore any such surgical trial would need a carefully defined protocol so that the potential benefit of such a treatment is maximized.
-
Review Case Reports
Intracranial hypotension syndrome: a comprehensive review.
Intracranial hypotension may have variable clinical presentations, but has a rather uniform component of postural headache among its symptomatology. Its symptoms are explainable given the effects of the hypotension and attempts within the craniospinal axis to maintain volume homeostasis in the face of cerebrospinal fluid leakage (Monro-Kellie hypothesis). The imaging corollaries of the consequences of intracranial hypotension are especially well depicted on magnetic resonance imaging studies.
-
Comparative Study
Outcome of severe traumatic brain injury: comparison of three monitoring approaches.
The determination of cerebral perfusion pressure (CPP) is regarded as vital in monitoring patients with severe traumatic brain injury. Besides indicating the status of cerebral blood flow (CBF), it also reveals the status of intracranial pressure (ICP). The abnormal or suboptimal level of CPP is commonly correlated with high values of ICP and therefore with poor patient outcomes. ⋯ Only time between injury and arrival (p = 0.001) was statistically significant. There was a statistically significant difference in the proportions of good outcomes between the multimodality group compared with the group of patients that underwent a single intracranial-based monitoring method and the group that received no monitoring (p = 0.003) based on a disability rating scale after a follow up of 12 months. Death was the focus of outcome in this study in which the multimodality approach to monitoring had superior results.