Neurosurg Focus
-
Review Comparative Study
Assessment of outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 60 years of age.
Decompressive surgery can be life saving after malignant cerebral infarction. However, severe residual disability occurs in a significant number of surviving patients. Most discussion about the benefits of surgery is based on studies performed in patients who are < or = 60 years of age. Less is known about the benefits of the procedure in the elderly population. The authors undertook a review of the literature on decompressive craniectomy for malignant cerebral infarction and compared the mortality and outcome data published in patients older and younger than 60 years of age. The authors discuss their analysis, with specific reference to the limitations of the studies analyzed, the outcome measures used, and the special considerations required when discussing stroke recovery in the elderly. ⋯ The mortality rate and functional outcome, as measured by the BI and mRS, were significantly worse in patients > 60 years of age following decompressive craniectomy for malignant infarction. Age is an important factor to consider in patient selection for surgery. However, cautious interpretation of the results is required because the outcome scores that were used only measure physical disability, whereas other factors, including psychosocial, financial, and caregiver burden, should be considered in addition to age alone.
-
Decompressive craniectomy is an established procedure to lower intracranial pressure. Therefore, cranioplasty remains a necessity in neurosurgery as well. If the patient's own bone flap is not available, the surgeon can choose between various alloplast grafts. A review of the literature proves that 4-13.8% of polymethylmethacrylate plates and 2.6-10% of hydroxyapatite-based implants require replacement. In this retrospective study of large skull defects, the authors compared computer-assisted design/computer-assisted modeled (CAD/CAM) titanium implants for cranioplasty with other frequently used materials described in literature. ⋯ With the aid of CAD technology, all currently used alloplastic materials are suited even for large skull defect cranioplasty. Analysis of the authors' data and the literature shows that cranioplasty with CAD/CAM titanium implants provides the lowest rate of complications, reasonable costs, and acceptable postoperative imaging. Polymethylmethacrylate is suited for primary cranioplasty or for long-term follow-up imaging of tumors. Titanium implants seem to be the material of choice for secondary cranioplasty of large skull defects resulting from decompressive craniectomy after trauma or infarction. Expensive HA-based ceramics show no obvious advantage over titanium or PMMA.
-
Comparative Study
Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases.
Decompressive craniectomy is a potentially life-saving procedure used in the treatment of medically refractory intracranial hypertension, most commonly in the setting of trauma or cerebral infarction. Once performed, surviving patients are obligated to undergo a second procedure for cranial reconstruction. The complications following cranial reconstruction are not well described in the literature and may very well be underreported. A review of the complications would suggest measures to improve the care of these patients. ⋯ Cranioplasty following decompressive craniectomy is associated with a high complication rate. Patients undergoing a bifrontal craniectomy are at significantly increased risk for postcranioplasty complications, including the need for reoperation.
-
The aim of this study was to analyze decompressive craniectomy (DC) in the setting of subarachnoid hemorrhage (SAH) with bleeding, infarction, or brain swelling as the underlying pathology in a large cohort of consecutive patients. ⋯ Based on the data in this study the authors concluded that primary as well as secondary craniectomy might be warranted, regardless of the underlying etiology (hemorrhage, infarction, or brain swelling) and admission clinical grade of the patient. The time from the onset of intractable intracranial pressure to DC seems to be crucial for a favorable outcome, even when a DC is performed late in the disease course after SAH.
-
Review Comparative Study
Complications of decompressive craniectomy for traumatic brain injury.
Decompressive craniectomy is widely used to treat intracranial hypertension following traumatic brain injury (TBI). Two randomized trials are currently underway to further evaluate the effectiveness of decompressive craniectomy for TBI. Complications of this procedure have major ramifications on the risk-benefit balance in decision-making during evaluation of potential surgical candidates. ⋯ In the longer term, a persistent vegetative state is the most devastating of outcomes of decompressive craniectomy. The risk of complications following decompressive craniectomy is weighed against the life-threatening circumstances under which this surgery is performed. Ongoing trials will define whether this balance supports surgical decompression as a first-line treatment for TBI.