Neurosurg Focus
-
Multicenter Study
Flow-based evaluation of cerebral revascularization using near-infrared indocyanine green videoangiography.
Indocyanine green (ICG) videoangiography has been established as a noninvasive technique to gauge the patency of a bypass graft; however, intraoperative graft patency may not always correlate with graft flow. Altered flow through the bypass graft may directly cause delayed graft occlusion. Here, the authors report on 3 types of flow that were observed through cerebral revascularization procedures. ⋯ Indocyanine green videoangiography is reliable for evaluating flow through the EC-IC or IC-IC bypass. The type of flow observed through the graft has a direct relationship with postoperative imaging findings. Despite the possibility of competitive flow, Type III and some Type II flows through the graft indicate the need for graft evaluation and anastomosis exploration.
-
The authors report on the use of a recently developed microscope-integrated fluorescent module using low-dose intravenous fluorescein for videoangiography during arteriovenous malformation (AVM) surgery. ⋯ The authors found fluorescein videoangiography to be a useful adjunct in resection of AVMs. This technology offers the unique ability to visualize fluorescent vessels and nonfluorescent tissues in near-natural colors simultaneously and permits microsurgical manipulation of relevant structures under the fluorescent mode. Larger-scale studies are needed to establish its efficacy and wider applicability.
-
The accurate discrimination between tumor and normal tissue is crucial for determining how much to resect and therefore for the clinical outcome of patients with brain tumors. In recent years, guidance with 5-aminolevulinic acid (5-ALA)-induced intraoperative fluorescence has proven to be a useful surgical adjunct for gross-total resection of high-grade gliomas. The clinical utility of 5-ALA in resection of brain tumors other than glioblastomas has not yet been established. The authors assessed the frequency of positive 5-ALA fluorescence in a cohort of patients with primary brain tumors and metastases. ⋯ Study findings suggest that the administration of 5-ALA as a surgical adjunct for resection and biopsy of primary brain tumors and brain metastases is safe. In light of the high rate of positive fluorescence in high-grade gliomas other than glioblastomas, meningiomas, and a variety of metastatic cancers, 5-ALA seems to be a promising tool for enhancing intraoperative identification of neoplastic tissue and optimizing the extent of resection.
-
The intraoperative clear delineation between brain tumor and normal tissue in real time is required to ensure near-complete resection without damaging the nearby eloquent brain. Tumor Paint BLZ-100, a tumor ligand chlorotoxin (CTX) conjugated to indocyanine green (ICG), has shown potential to be a targeted contrast agent. There are many infrared imaging systems in use, but they are not optimized to the low concentration and amount of ICG. The authors present a novel proof-of-concept near-infrared (NIR) imaging system using a standard charge-coupled device (CCD) camera for visualizing low levels of ICG attached to the tumors. This system is small, inexpensive, and sensitive. The imaging system uses a narrow-band laser at 785 nm and a notch filter in front of the sensor at the band. The camera is a 2-CCD camera, which uses identical CCDs for both visible and NIR light. ⋯ The authors have seen that BLZ-100 has a very high affinity toward human gliomas. They also describe a small, cost-effective, and sensitive NIR system for visualizing brain tumors tagged using BLZ-100. The authors hope that the use of BLZ-100 along with NIR imaging will be useful to delineate the brain tumors in real time and assist surgeons in near-complete tumor removal to increase survival and reduce neurological deficits.