Neurosurg Focus
-
OBJECTIVE Glioblastoma (GBM) is the most common and deadly malignant primary brain tumor. Better surgical therapies are needed for newly diagnosed GBMs that are difficult to resect and for GBMs that recur despite standard therapies. The authors reviewed their institutional experience of using laser interstitial thermal therapy (LITT) for the treatment of newly diagnosed or recurrent GBMs. ⋯ The median progression-free survival was 5 months, and the median survival was greater than 7 months. CONCLUSIONS In carefully selected patients with recurrent GBM, LITT may be an effective alternative to surgery as a salvage treatment. Its role in the treatment of newly diagnosed unresectable GBMs is not established yet and requires further study.
-
OBJECTIVE An emerging paradigm for treating patients with epidural spinal cord compression (ESCC) caused by metastatic tumors is surgical decompression and stabilization, followed by stereotactic radiosurgery. In the setting of rapid progressive disease, interruption or delay in return to systemic treatment can lead to a negative impact in overall survival. To overcome this limitation, the authors introduce the use of spinal laser interstitial thermotherapy (sLITT) in association with percutaneous spinal stabilization to facilitate a rapid return to oncological treatment. ⋯ The median time to return to oncological treatment was 5 days (range 3-10 days). CONCLUSIONS The authors present the first cohort of sLITT associated with a percutaneous spinal stabilization for the treatment of ESCC and spinal instability. This minimally invasive technique can allow a faster recovery without prejudice of adjuvant systemic treatment, with adequate local control and spinal stabilization.
-
Laser interstitial thermal therapy (LITT) is a minimally invasive procedure used to treat a variety of intracranial lesions. Utilization of robotic assistance with stereotactic procedures has gained attention due to potential for advantages over conventional techniques. The authors report the first case in which robot-assisted MRI-guided LITT was used to treat radiation necrosis in the posterior fossa, specifically within the cerebellar peduncle. ⋯ They placed the laser applicator and then ablated the lesion under real-time MR thermometry. There were no complications, and the patient tolerated the procedure well. Postoperative 2-month MRI showed complete resolution of the lesion, and the patient had some improvement in symptoms.
-
OBJECTIVE Laser interstitial thermal therapy (LITT), sometimes referred to as "stereotactic laser ablation," has demonstrated utility in a subset of high-risk surgical patients with difficult to access (DTA) intracranial neoplasms. However, the treatment of tumors larger than 10 cm3 is associated with suboptimal outcomes and morbidity. This may limit the utility of LITT in dealing with precisely those large or deep tumors that are most difficult to treat with conventional approaches. ⋯ CONCLUSIONS Laser interstitial thermal therapy followed by minimally invasive transsulcal resection, reported here for the first time, is a novel option for patients with large, DTA, malignant brain neoplasms. There were no unexpected neurological complications in this series, and operative characteristics improved as surgeon experience increased. Further studies are needed to elucidate any differences in survival or quality of life metrics.
-
OBJECTIVE Laser interstitial thermal therapy (LITT) is used in numerous neurosurgical applications including lesions that are difficult to resect. Its rising popularity can be attributed to its minimally invasive approach, improved accuracy with real-time MRI guidance and thermography, and enhanced control of the laser. One of its drawbacks is the possible development of significant edema, which contributes to extended hospital stays and often necessitates hyperosmolar or steroid therapy. ⋯ No increase in infection rates was identified. CONCLUSIONS Resection of ablated tumor is a viable option to reduce the incidence of neurological deficits due to edema following LITT. This approach appears to mitigate cerebral edema by increasing available volume for mass effect and reducing the tissue burden that may promote an inflammatory response.