Neurosurg Focus
-
Historical Article
The history of urea as a hyperosmolar agent to decrease brain swelling.
In 1919, it was observed that intravascular osmolar shifts could collapse the thecal sac and diminish the ability to withdraw CSF from the lumbar cistern. This led to the notion that hyperosmolar compounds could ameliorate brain swelling. Since then, various therapeutic interventions have been used for the reduction of intracranial pressure and brain volume. ⋯ However, mannitol was initially purported to be less effective at rapidly reducing intracranial pressure. The debate over the two compounds continued for a decade until mannitol eventually replaced urea by the late 1960s and early 1970s as the hyperosmolar agent of choice due to the ease of preparation, chemical stability, and decreased side effect profile. Although urea is not currently the standard of care today, its rise and eventual replacement by mannitol played a seminal role in both our understanding of cerebral edema and the establishment of strategies for its management.
-
Review Historical Article
Materials used in cranioplasty: a history and analysis.
Cranioplasty, one of the oldest surgical procedures used to repair cranial defects, has undergone many revolutions over time to find the ideal material to improve patient prognosis. Cranioplasty offers cosmetic and protective benefits for patients with cranial defects. The first primitive cranioplasty procedures date back to 7000 bc and used metal and gourds to repair cranial defects. ⋯ Research now has shifted toward molecular biology to improve the ability of the patient to regenerate bone using bone growth factors. This paper reviews the evolution of materials used over time in addition to the various advantages and pitfalls associated with each change. It is important for neurosurgeons to be mindful of how these techniques have evolved in order to gain a better understanding of this procedure and how it has been adapted.
-
Biography Historical Article
Craniosynostosis surgery: the legacy of Paul Tessier.
Paul Louis Tessier is recognized as the father of craniofacial surgery. While his story and pivotal contributions to the development of the multidisciplinary practice of craniofacial surgery are much highlighted in plastic surgery literature, they are seldom directly discussed in the context of neurosurgeons. His life and legacy to craniosynostosis and neurosurgery are explored in the present paper.
-
Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. ⋯ This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.
-
Spinal instrumentation has made significant advances in the last two decades, with transpedicular constructs now widely used in spinal fixation. Pedicle screw constructs are routinely used in thoracolumbar-instrumented fusions, and in recent years, the cervical spine as well. Three-column fixations with pedicle screws provide the most rigid form of posterior stabilization. ⋯ The ability to combine 3D imaging with intraoperative navigation systems has improved the accuracy and safety of pedicle screw placement, especially in more complex spinal deformities. However, in the authors' experience with image guidance in more than 1500 cases, several potential pitfalls have been identified while using intraoperative spinal navigation that could lead to suboptimal results. This article summarizes the authors' experience with these various pitfalls using spinal navigation, and gives practical tips on their avoidance and management.