World Neurosurg
-
The feasibility and efficacy of magnetic resonance imaging molecular probe application and pluripotent stem cell-derived neural stem cell (NSC) transplantation for the treatment of hind limb paralysis in mice with cerebral infarction were studied. A model of middle cerebral artery infarction using adult mice was established to stimulate hind limb reactions. After the model was successfully established, the mice were first divided into an experimental group and a control group, with 25 mice in each group. ⋯ In rats, it plays a positive role in the repair of nerve function in mice with cerebral infarction. NSCs cultured in vitro can survive, migrate, and differentiate in the brain tissue of mouse ischemic models and play a positive role in the repair of neurologic function in mice with cerebral infarction. Magnetic resonance imaging molecular probes have a good adjuvant effect on the use of pluripotent stem cell-derived NSCs to treat hind limb paralysis in mice with cerebral infarction.
-
For several variants of quasi-moyamoya disease, cerebral revascularization treatment is as effective as it is for the more typical cases of moyamoya disease. Here, we examined a case of moyamoya disease with concurrent congenital rubella syndrome (CRS). On the basis of concurrent underlying disease, the patient was considered to have quasi-moyamoya disease and was treated with cerebral revascularization. ⋯ To our knowledge, this is the first known report of moyamoya disease with concurrent CRS. We treated this patient with revascularization as typical for other quasi-moyamoya conditions including Down syndrome. This case emphasizes the effectiveness of revascularization treatment for moyamoya disease with concurrent CRS for the prevention of ischemic stroke and improvement of cognitive function, despite existing cerebral infarction.
-
This paper used magnetic resonance diffusion kurtosis imaging to observe the acute cerebral infarction model of mice, and studied the imaging changes of ischemic penumbra after perfusion of model for rat middle cerebral artery occlusion experiment, and combined with the physiologic changes of mice. The damage of neurons was evaluated by the evolution of N-methyl-D-aspartate receptors to provide a corresponding imaging basis for the diagnosis and treatment of ischemic penumbra. The research shows that the diffusivity value decreases with time, and the diffusion kurtosis increases with time. ⋯ The expression of N-methyl-D-aspartate receptor 2A in tissue homogenate increased overall, and expression in synaptic membrane, synaptic membrane, and light membrane decreased. The expression of N-methyl-D-aspartate acid receptor 2B in tissue homogenate, synaptic membrane, and light cell membrane decreased, and it increased first and then decreased in the synaptic membrane. The studies confirmed that magnetic resonance imaging has a certain clinical diagnostic value for the penumbra evolution mechanism and neuronal injury of acute cerebral infarction, which deserves further study.