World Neurosurg
-
The endoscopic transorbital approach (ETOA) is a minimally invasive approach that could be particularly appropriate for management of spheno-orbital meningiomas. The aim of this study was to perform a systematic review of the literature on the management of spheno-orbital meningiomas via the minimally invasive ETOA, searching for clinical scenarios in which this approach could be best indicated. A secondary aim was to describe 4 illustrative cases. ⋯ Our findings support the use of the ETOA for management of spheno-orbital meningiomas, particularly in at least 3 clinical scenarios: 1) when predominant hyperostotic bone is present; 2) when a globular tumor not showing excessive medial or inferior infiltration is being treated; 3) as part of a multistage treatment for diffuse lesions.
-
We present an institutional case series of patients treated for colorectal carcinoma (CRC) spinal metastases to investigate the outcomes between no treatment, radiation, surgery, and surgery/radiation. ⋯ Therapeutic intervention has the potential to improve the quality of life in patients with CRC spinal metastases. We demonstrate that surgery and radiation are useful options for these patients, despite their lack of objective improvement in OS.
-
Review
Artificial Reality in Minimally Invasive Spinal Surgery: A Narrative Review of Available Technology.
Spine surgery has undergone significant changes in approach and technique. With the adoption of intraoperative navigation, minimally invasive spinal surgery (MISS) has arguably become the gold standard. Augmented reality (AR) has now emerged as a front-runner in anatomical visualization and narrower operative corridors. In effect, AR is poised to revolutionize surgical training and operative outcomes. Our study examines the current literature on AR-assisted MISS, synthesizes findings, and creates a narrative highlighting the history and future of AR in spine surgery. ⋯ While still in its infancy, AR has already proven beneficial for educational training and intraoperative MISS applications. We believe that with continued research and advancement of this technology, AR is poised to become a dominant player within the fundamentals of surgical education and MISS operative technique.
-
Intraoperative MRI has been increasingly used to robotically deliver electrodes and catheters into the human brain using a linear trajectory with great clinical success. Current cranial MR guided robotics do not allow for continuous real-time imaging during the procedure because most surgical instruments are not MR-conditional. MRI guided robotic cranial surgery can achieve its full potential if all the traditional advantages of robotics (such as tremor-filtering, precision motion scaling, etc.) can be incorporated with the neurosurgeon physically present in the MRI bore or working remotely through controlled robotic arms. ⋯ This article elucidates the role of MR-guided robotic procedures using clinical devices like NeuroBlate and Clearpoint that have several thousands of cases operated in a "linear cranial trajectory" and planned clinical trials, such as LAANTERN for MR guided robotics in cranial neurosurgery using LITT and MR-guided putaminal delivery of AAV2 GDNF in Parkinson's disease. The next logical improvisation would be a steerable curvilinear trajectory in cranial robotics with added DOFs and distal tip dexterity to the neurosurgical tools. Similarly, the novel concept of robotic actuators that are powered, imaged, and controlled by the MRI itself is discussed in this article, with its potential for seamless cranial neurosurgery.