The Journal of cell biology
-
Editorial Historical Article
Celebrating the first 60 years of The Journal of Cell Biology.
-
Cell biologists everywhere rejoiced when this year's Nobel Prize in Physiology or Medicine was awarded to James Rothman, Randy Schekman, and Thomas Südhof for their contributions to uncovering the mechanisms governing vesicular transport. In this article, we highlight their achievements and also pay tribute to the pioneering scientists before them who set the stage for their remarkable discoveries.
-
Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P₂) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. ⋯ PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P₂ because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P₂ was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity.
-
Dependence of basal cell carcinomas and medulloblastomas on the Hedgehog pathway provides an opportunity for targeted or "personalized" therapy. The recent effectiveness and FDA approval of the first Smoothened inhibitors validates this class of agents, but has revealed drug-resistant tumor variants that bypass Smoothened inhibition. Here, we summarize the effectiveness of Hedgehog pathway inhibitors and highlight promising areas for the development of next generation drug antagonists for Hedgehog-dependent cancers.
-
The protein kinase B-Raf is a critical component of the Ras/MAPK signaling pathway. An oncogenic B-Raf mutation that constitutively activates the kinase was identified in ~50% of melanoma patients and in other cancers. A structure-guided drug discovery approach enabled the development of Zelboraf, a targeted inhibitor of oncogenic B-Raf. This drug has been used successfully in the clinic to treat metastatic melanoma patients harboring B-Raf mutations.