Bmc Infect Dis
-
Review Meta Analysis
A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance.
Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substantially less than from hospitalized patients on whom guidelines are often based. We therefore chose to assess the relationship between the antibiotic resistance pattern of bacteria circulating in the community and the consumption of antibiotics in the community. ⋯ Using a large set of studies we found that antibiotic consumption is associated with the development of antibiotic resistance. A subsequent meta-analysis, with a subsample of the studies, generated several significant predictors. Countries in southern Europe produced a stronger link between consumption and resistance than other regions so efforts at reducing antibiotic consumption may need to be strengthened in this area. Increased consumption of antibiotics may not only produce greater resistance at the individual patient level but may also produce greater resistance at the community, country, and regional levels, which can harm individual patients.
-
Comparative Study
External validation of the CURSI criteria (confusion, urea, respiratory rate and shock index) in adults hospitalised for community-acquired pneumonia.
For patients hospitalised due to community-acquired pneumonia (CAP), mortality risk is usually estimated with prognostic scores such as CRB-65 or CURB-65. For elderly patients, a new score referred to as CURSI has been proposed which uses shock index (SI) instead of the blood pressure (B) and age (65) criteria. The new score has not been externally validated to date. ⋯ In our study, the CURSI-defined low-risk group had a higher 30-day mortality than the low-risk groups defined by CURB-65 and CRB-65. Lowering the cut-off value for the CURSI low-risk group would result in a mortality comparable to the CURB-65-defined low risk group. Even then, however, CURSI does not perform better than the established risk scores.
-
High mortality and morbidity rates associated with severe infections in the critically ill continue to be a significant issue for the healthcare system. In view of the diverse and unique pharmacokinetic profile of drugs in this patient population, there is increasing use of therapeutic drug monitoring (TDM) in attempt to optimize the exposure of antibiotics, improve clinical outcome and minimize the emergence of antibiotic resistance. ⋯ Further, there is significant variability among institutions with respect to the practice of TDM including the selection of patients, sampling time for concentration monitoring, methodologies of antibiotic assay, selection of PK/PD targets as well as dose optimisation strategies. The aim of this paper is to review the available evidence relating to practices of antibiotic TDM, and describe how TDM can be applied to potentially improve outcomes from severe infections in the critically ill.
-
Comparative Study Observational Study
Serum activin A and B, and follistatin in critically ill patients with influenza A(H1N1) infection.
Activin A and its binding protein follistatin (FS) are increased in inflammatory disorders and sepsis. Overexpression of activin A in the lung causes similar histopathological changes as acute respiratory distress syndrome (ARDS). ARDS and severe respiratory failure are complications of influenza A(H1N1) infection. Interleukin 6 (IL-6), which in experimental studies increases after activin A release, is known to be related to the severity of H1N1 infection. Our aim was to evaluate the levels of activin A, activin B, FS, IL-6 and IL-10 and their association with the severity of respiratory failure in critically ill H1N1 patients. ⋯ Higher than normal values of these proteins were common in patients with H1N1 infection but we found no association with the severity of their respiratory failure.
-
We hypothesized that among septic ICU patients with Acinetobacter spp. bacteremia (Ac-BSI), carbapenem-resistant Acinetobacter spp. (CRAc) increase risk for inappropriate initial antibiotic therapy (non-IAAT), and non-IAAT is a predictor of hospital death. ⋯ Among septic ICU patients with Ac-BSI, non-IAAT predicts mortality. Carbapenem resistance appears to mediate the relationship between non-IAAT and mortality.