Eurosurveillance
-
Bacillus anthracis infection (anthrax) has three distinct clinical presentations depending on the route of exposure: cutaneous, gastrointestinal and inhalational anthrax. Each of these can lead to secondary bacteraemia and anthrax meningitis. Since 2009,anthrax has emerged among heroin users in Europe,presenting a novel clinical manifestation, 'injectional anthrax', which has been attributed to contaminated heroin distributed throughout Europe; before 2009 only one case was reported. ⋯ Sixteen of these presented as a severe soft tissue infection that differed clinically from cutaneous anthrax, lacked the characteristic epidemiological history of animal contact and ten cases required complimentary surgical debridement. These unfamiliar characteristics have led to delays of three to 12 days in diagnosis, inadequate treatment and a high fatality rate. Clinicians' awareness of this recently described clinical entity is key for early 'and successful management of patients.
-
Enterovirus D68 (EV-D68) continued to circulate in a seasonal pattern in the Netherlands, after the outbreak in 2010. Outpatient EV-D68 cases, mainly in the under 20 and 50–59 years age groups, presented with relatively mild respiratory disease. Hospital-based enterovirus surveillance identified more severe cases, mainly in children under 10 years of age. Dutch partial VP1 genomic region sequences from 2012 through 2014 were distributed over three sublineages similar to EV-D68 from the outbreak in the US in 2014.
-
A countrywide survey in Oman revealed Middle Eastrespiratory syndrome coronavirus (MERS-CoV) nucleicacid in five of 76 dromedary camels. Camel-derivedMERS-CoV sequences (3,754 nucleotides assembled from partial sequences of the open reading frame (ORF)1a, spike, and ORF4b genes) from Oman and Qatar were slightly different from each other, but closely related to human MERS-CoV sequences from the same geographical areas, suggesting local zoonotic transmission. High viral loads in nasal and conjunctival swabs suggest possible transmission by the respiratory route.
-
Avian influenza A(H7N9) virus re-emerged in China in December 2013, after a decrease in the number of new cases during the preceding six months. Reassortment between influenza A(H7N9) and local H9N2 strains has spread from China's south-east coast to other regions. Three new reassortments of A(H7N9) virus were identified by phylogenetic analysis: between A(H7N9) and Zhejiang-derived strains, Guangdong/Hong Kong-derived strains or Hunan-derived A(H9N2) strains. Our findings suggest there is a possible risk that a pandemic could develop.
-
A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. ⋯ The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.