The Journal of endocrinology
-
Leptin, the peptide hormone product of the ob gene, regulates food intake and energy expenditure at the hypothalamic level via the long-form of the leptin receptor (Ob-Rb). Leptin also plays a key role in determining the onset of puberty, but there is controversy as to whether leptin provides a trigger for puberty or is a permissive signal. Thus, although leptin administration can advance puberty onset in rodents, circulating leptin appears stable across puberty. ⋯ Plasma leptin then remained unchanged from day 15 in female rats but increased in males after puberty, thus confirming the well-recognised sex difference in adult rat leptin levels. In conclusion, this study shows that developmental increases occur not only in plasma leptin but also in hypothalamic Ob-Rb expression, suggesting that both are likely to influence the timing of puberty onset. Moreover, our data show that sex differences in both hypothalamic Ob-Rb and plasma leptin emerge only after puberty.
-
We have evaluated the reporting of withdrawals due to adverse effects and specific adverse effects in randomised controlled trials of recombinant human GH in adults. A systematic review was carried out of randomised controlled trials of the clinical effectiveness of recombinant human GH in adults with GH deficiency in relation to impact on quality of life. Trials were identified from searching electronic databases, bibliographies of related articles and consulting experts. ⋯ The reporting of adverse events in randomised controlled trials of GH is variable and not consistent across trials. It is not possible to assess the impact that adverse events may have had on unblinding patients, and therefore the extent to which the effects of GH may have been overestimated. Therefore those conducting endocrinology trials in the future need to pay attention to the reporting of withdrawals due to adverse events and specific adverse events.
-
Comparative Study
Differential expression of suppressors of cytokine signalling genes in response to nutrition and growth hormone in the septic rat.
GH treatment during critical illness and sepsis may increase mortality. A family of negative regulators of cytokine signalling, the suppressors of cytokine signalling (SOCS), have been characterised. SOCS provide a mechanism for cross-talk between the cytokine receptors, including GH. ⋯ In conclusion, CLP induced low IGF-I levels associated with increased expression of SOCS-1 and SOCS-3, both of which are known to inhibit GH receptor signalling. GH induced SOCS-2 and CIS in the CLP rat despite resistance with respect to IGF-I generation, and parenteral feeding induced CIS in the CLP rat. Thus, there is potential for a complex interaction between GH and cytokine signalling at the level of SOCS expression whereby the inflammatory response may alter GH signalling and GH may influence the inflammatory response.
-
Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). ⋯ The level of insulin-stimulated tyrosine phosphorylation of p85alpha from phosphatidylinositol 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal-regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.
-
Tumour necrosis factor-alpha (TNF-alpha), secreted by cells of the macrophage-monocyte lineage, has a well established role in inflammation and host-defence. The more recent discovery that adipocytes also secrete TNF-alpha has led to a substantial body of research implicating this molecule in the insulin resistance of obesity. However, little is known about the normal regulation of TNF-alpha release from human adipose tissue. ⋯ The increase in TNF-alpha protein release in response to LPS was blocked by an inhibitor of the matrix metalloproteinase responsible for the cleavage of the membrane-bound proform of TNF-alpha, indicating that this release represented regulated secretion and was not due to cell lysis. In conclusion, the regulation of TNF-alpha protein release from human adipose tissue and isolated adipocytes appears to be similar to its regulation in cell types more traditionally implicated in host defence. The production by the adipocyte of a range of molecules involved in host defence-TNF-alpha, factors D, B and C3, interleukin-6, and macrophage colony-stimulating factor--suggest that this cell type may make a significant contribution to innate immunity.