The Journal of endocrinology
-
We have shown that maternal nicotine exposure during lactation has long-lasting effects on body adiposity and hormonal status of rat offspring. Here, we studied the nutritional and hormonal profiles in this experimental model. Two days after birth, osmotic minipumps were implanted in lactating rats divided into two groups: NIC - continuous s.c. infusions of nicotine (6 mg/kg per day) for 14 days and C - saline. ⋯ The 21-day-old NIC pups had higher body protein content and serum globulin. Thus, maternal nicotine exposure during lactation results in important changes in nutritional, biochemical, and hormonal parameters in dams and offspring. The pattern of these effects is clearly distinct when comparing the nicotine-exposed group to the withdrawal group, which could be important for the programming effects observed previously.
-
The liver X receptors (LXRs) are nuclear receptors that are activated by endogenous oxysterols, oxidized derivatives of cholesterol. There are two isoforms of LXR, LXRalpha (NR1H3) and LXRbeta (NR1H2). ⋯ In this review, we summarize the roles of LXRs in controlling cholesterol homeostasis, including their roles in bile acid synthesis and metabolism/excretion, reverse cholesterol transport, cholesterol biosynthesis and uptake, and cholesterol absorption/excretion in the intestine. The overlapping and distinct roles of the LXRalpha and LXRbeta isoforms, and the potential use of LXRs as attractive targets for treatment of cardiovascular disease are also discussed.
-
Epidemiological studies show a higher prevalence of obesity in children from smoking mothers and smoking may affect human thyroid function. To evaluate the mechanism of smoking as an imprinting factor for these dysfunctions, we evaluated the programming effects of maternal nicotine (NIC) exposure during lactation. Two days after birth, osmotic minipumps were implanted in lactating rats, divided into: NIC (6 mg/kg per day s.c.) for 14 days; Control - saline. ⋯ In both periods, liver type 1 deiodinase was lower (26 and 55%). We evidenced that NIC imprints a neonatal thyroid dysfunction and programs for a higher adiposity, hyperleptinemia, and secondary hypothyroidism in adulthood. Our study identifies lactation as a critical period to NIC programming for obesity, with hypothyroidism being a possible contributing factor.
-
Ghrelin, a hormone primarily produced by the stomach, has a wide range of metabolic and non-metabolic effects. It also stimulates food intake through activation of various hypothalamic and brain stem neurons. A series of recent studies have explored the intracellular mechanisms of the appetite-inducing effect of ghrelin in the hypothalamus, shedding light on the intricate mechanisms of appetite regulation. ⋯ Calmodulin kinase kinase 2 (CaMKK2) has been identified as an upstream kinase of AMPK and a key mediator in the effect of ghrelin on AMPK activity. The fatty acid pathway, hypothalamic mitochondrial respiration, and uncoupling protein 2 have been outlined as downstream targets of AMPK and mediators of ghrelin's appetite stimulating effect. This short overview summarises the present data in this field.
-
The apelinergic system has a widespread expression in the central nervous system (CNS) including the paraventricular nucleus, supraoptic nucleus and median eminence, and isolated cells of the anterior lobe of the pituitary. This pattern of expression in hypothalamic nuclei known to contain corticotrophin-releasing factor (CRF) and vasopressin (AVP) and to co-ordinate endocrine responses to stress has generated interest in a role for apelin in the modulation of stress, perhaps via the regulation of hormone release from the pituitary. ⋯ Additionally, pGlu-apelin-13-mediated increases in both plasma ACTH and CORT were significantly attenuated in V1bR KO animals when compared with wild-type controls, indicating a role for the vasopressinergic system in the regulation of the effects of apelin on neuroendocrine function. Together, these data confirm that the in vivo effects of apelin on hypothalamic-pituitary-adrenal neuroendocrine function appear to be mediated through both CRF- and AVP-dependent mechanisms.