The Journal of endocrinology
-
Apoptosis plays a critical role in the diabetic cardiomyopathy, and endoplasmic reticulum stress (ERS) is one of the intrinsic apoptosis pathways. Previous studies have shown that the endoplasmic reticulum becomes swollen and dilated in diabetic myocardium, and ERS is involved in heart failure and diabetic kidney. This study is aimed to demonstrate whether ERS is induced in myocardium of streptozotocin (STZ)-induced diabetic rats. ⋯ We found these hallmarks to have enhanced expression in protein and mRNA levels in diabetic myocardium. Also, another pathway that can lead to cell death of ERS, c-Jun NH(2)-terminal kinase-dependent pathway, was also activated in diabetic heart. Those results suggested that ERS was induced in STZ-induced diabetic rats' myocardium, and ERS-associated apoptosis occurred in the pathophysiology of diabetic cardiomyopathy.
-
Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. ⋯ In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.
-
Randomized Controlled Trial
Effects of exercise on gut peptides, energy intake and appetite.
This study investigated the acute effects of exercise on the postprandial levels of appetite-related hormones and metabolites, energy intake (EI) and subjective measures of appetite. Ghrelin, polypeptide YY (PYY), glucagon-like peptide-1 (GLP-1) and pancreatic polypeptide (PP) were measured in the fasting state and postprandially in 12 healthy, normal-weight volunteers (six males and six females) using a randomised crossover design. One hour after a standardised breakfast, subjects either cycled for 60 min at 65% of their maximal heart rate or rested. ⋯ Hunger scores and PYY, GLP-1 and PP levels showed an inverse temporal pattern during the 1-h exercise/control intervention. In conclusion, acute exercise, of moderate intensity, temporarily decreased hunger sensations and was able to produce a short-term negative energy balance. This impact on appetite and subsequent energy homeostasis was not explained by changes in postprandial levels of ghrelin; however, 'exercise-induced anorexia' may potentially be linked to increased PYY, GLP-1 and PP levels.
-
The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ⋯ As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.
-
[Arg8]-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which exert various actions, including the control of blood glucose, in some peripheral tissues. To investigate the type of receptors involved in AVP- and OT-induced glucagon secretion, we investigated the effect of these peptides on glucagon secretion in islets of wild-type (V1bR+/+) and vasopressin V1b receptor knockout (V1bR-/-) mice. AVP-induced glucagon secretion was significantly inhibited by the selective V1b receptor antagonist, SSR149415 (30%), and OT-induced glucagon secretion by the specific OT receptor antagonist, d(CH2)5[Tyr(Me)2, Thr4, Tyr-NH(2)(9)]OVT (CL-14-26) (45%), in islets of V1bR+/+mice. ⋯ In addition, both AVP and OT stimulated glucagon secretion with the same efficacy in V1bR-/- mice as in V1bR+/+ mice. AVP- and OT-induced glucagon secretion in V1bR-/- mice was significantly inhibited by CL-14-26. These results demonstrate that V1b receptors can mediate OT-induced glucagon secretion and OT receptors can mediate AVP-induced glucagon secretion in islets from V1bR+/+mice in the presence of a heterologous antagonist, while AVP and OT can stimulate glucagon secretion through the OT receptors in V1bR-/-mice, suggesting that the other receptor can compensate when one receptor is absent.