Life sciences
-
The novel corona virus disease has shaken the entire world with its deadly effects and rapid transmission rates, posing a significant challenge to the healthcare authorities to develop suitable therapeutic solution to save lives on earth. The review aims to grab the attention of the researchers all over the globe, towards the role of ACE2 in COVID-19 disease. ACE2 serves as a molecular target for the SARS-CoV-2, to enter the target cell, by interacting with the viral glycoprotein spikes. ⋯ Furthermore, certain investigations revealed greater resistance among children as compared to the geriatrics, towards COVID-19 infection, despite the elevated expression of ACE2 in pediatric population. Based upon such evidences, the review demonstrated possible therapeutic interventions, targeting both the protective and deleterious effects of ACE2 in COVID-19 disease, primarily inhibiting ACE2-virus interactions or administering soluble ACE2. Thus, the authors aim to provide an opportunity for the researchers to consider RAAS system to be a significant element in development of suitable treatment regime for COVID-19 pandemic.
-
Naldemedine is a peripherally acting μ-opioid receptor antagonists (PAMORAs) indicated for the treatment of opioid-induced constipation (OIC). We investigated the preventive effect of naldemedine on morphine-induced nausea and vomiting in ferrets and conducted a pharmacokinetic/pharmacodynamic (PK/PD) analysis. ⋯ Naldemedine showed potent inhibition of morphine-induced vomiting for up to 6 h after dosing. These data suggest that naldemedine possesses antiemetic properties and could be effective against opioid-induced nausea and vomiting (OINV).
-
The COVID-19 pandemic raised by SARS-CoV-2 is a public health emergency. However, lack of antiviral drugs and vaccine against human coronaviruses demands a concerted approach to challenge the SARS-CoV-2 infection. Under limited resource and urgency, combinatorial computational approaches to identify the potential inhibitor from known drugs could be applied against risen COVID-19 pandemic. ⋯ Molecular docking simulation predicted the docking score >-7 kcal/mol with significant intermolecular interaction at the catalytic dyad (His41 and Cys145) and other essential substrate binding residues of SARS-CoV-2 Mpro. The best ligand conformations were further studied for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamics simulation, established the significant stability and interactions of selected antibiotics by comparison to N3 inhibitor. Based on combinatorial molecular simulation analysis, doxycycline and minocycline were selected as potent inhibitor against SARS-CoV-2 Mpro which can used in combinational therapy against SARS-CoV-2 infection.
-
Novel coronavirus (severe acute respiratory syndrome coronavirus-2: SARS-CoV-2) has a high homology with other cousin of coronaviruses such as SARS and Middle East respiratory syndrome-related coronavirus (MERS). After outbreak of the SARS-CoV-2 in China, it has spread so fast around the world. The main complication of coronavirus disease 2019 (COVID-19) is respiratory failure, but several patients have also been admitted to the hospital with neurological symptoms. ⋯ In the present study, we describe the possible routes for entering of SARS-CoV-2 into the nervous system. Then, the neurological manifestations of the SARS-CoV-2 infection in the central nervous system (CNS) and peripheral nervous system (PNS) are reviewed. Furthermore, the neuropathology of the virus and its impacts on other neurological disorders are discussed.
-
The COVID-19-, SARS- and MERS-related coronaviruses share many genomic and structural similarities. However, the SARS-CoV-2 is less pathogenic than SARS-CoV and MERS-CoV. Despite some differences in the cytokine patterns, it seems that the cytokine storm plays a crucial role in the pathogenesis of COVID-19-, SARS- and MERS. ⋯ The SARS-CoV-2-infected monocytes and macrophages can produce large amounts of numerous types of pro-inflammatory cytokines and chemokines, which contribute to local tissue inflammation and a dangerous systemic inflammatory response called cytokine storm. Both local tissue inflammation and the cytokine storm play a fundamental role in the development of COVID-19-related complications, such as acute respiratory distress syndrome (ARDS), which is a main cause of death in COVID-19 patients. Here, we describe the monocytes and macrophage responses during severe coronavirus infections, while highlighting potential therapeutic interventions to attenuate macrophage-related inflammatory reactions in possible approaches for COVID-19 treatment.