Life sciences
-
Comparative Study
Tadalafil versus linaclotide in gastrointestinal dysfunction and depressive behavior in constipation-predominant irritable bowel syndrome.
Intestinal GC-C/cGMP pathway may be involved in visceral hypersensitivity and fluid secretion in irritable bowel syndrome (IBS). The guanylcyclase C agonist linaclotide, approved for IBS- constipation, is contraindicated in children as it may cause severe diarrhea. In contrast, drugs increasing cGMP by inhibiting phosphodiesterase 5 (PDE-5) are well tolerated in children with pulmonary hypertension. Accordingly, we investigated whether beneficial effects of linaclotide in IBS might be shared by PDE-5inhibitor tadalafil without the severe diarrhea reported for linaclotide. Since depression is commonly comorbid with IBS and is implicated in its pathophysiology; and since tadalafil is absorbed systemically and crosses blood brain barrier, whereas linaclotide does not, impact of both drugs on behavioral changes in IBS was also investigated. ⋯ Systemic PDE-5 inhibitors might be alternatives to locally acting guanyl cyclase agonists in IBS, inducing less severe diarrhea and more beneficial effects on the associated behavioral changes.
-
The 2019-novel coronavirus disease (COVID-19) is caused by SARS-CoV-2 is transmitted from human to human has recently reported in China. Now COVID-19 has been spread all over the world and declared epidemics by WHO. It has caused a Public Health Emergency of International Concern. ⋯ Due to the rapid increase of SARS-CoV-2 infections and unavailability of antiviral therapeutic agents, developing an effective SAR-CoV-2 vaccine is urgently required. SARS-CoV-2 which is genetically similar to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) is an enveloped, single and positive-stranded RNA virus with a genome comprising 29,891 nucleotides, which encode the 12 putative open reading frames responsible for the synthesis of viral structural and nonstructural proteins which are very similar to SARS-CoV and MERS-CoV proteins. In this review we have summarized various vaccine candidates i.e., nucleotide, subunit and vector based as well as attenuated and inactivated forms, which have already been demonstrated their prophylactic efficacy against MERS-CoV and SARS-CoV, so these candidates could be used as a potential tool for the development of a safe and effective vaccine against SARS-CoV-2.
-
Sepsis-induced acute respiratory distress syndrome (ARDS) is a common, high mortality complication in intensive care unit (ICU) patients. MicroRNA-92a (miR-92a) plays a role in many diseases, but its association with sepsis-induced ARDS is unclear. ⋯ Our study provides evidence that circulating serum miR-92a could act as a risk factor for sepsis-induced ARDS. MiR-92a inhibition attenuated the adverse effects of LPS on ARDS through the Akt/mTOR signaling pathway.
-
A new SARS coronavirus (SARS-CoV-2) belonging to the genus Betacoronavirus has caused a pandemic known as COVID-19. Among coronaviruses, the main protease (Mpro) is an essential drug target which, along with papain-like proteases catalyzes the processing of polyproteins translated from viral RNA and recognizes specific cleavage sites. There are no human proteases with similar cleavage specificity and therefore, inhibitors are highly likely to be nontoxic. ⋯ The SARS-CoV-2 Mpro shows identities of 96.08% and 50.65% to that of SARS-CoV Mpro and MERS-CoV Mpro respectively at the sequence level. At the structural level, the root mean square deviation (RMSD) between SARS-CoV-2 Mpro and SARS-CoV Mpro was found to be 0.517 Å and 0.817 Å between SARS-CoV-2 Mpro and MERS-CoV Mpro. Bonducellpin D exhibited broad-spectrum inhibition potential against SARS-CoV Mpro and MERS-CoV Mpro and therefore is a promising drug candidate, which needs further validations through in vitro and in vivo studies.
-
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical disease which can be caused by multiple pathological factors in clinic. However, feasible and effective treatment strategies of ALI/ARDS are limited. At present, the beneficial effect of stem cells (SCs)-based therapeutic strategies for ALI/ARDS can be attributed to paracrine. ⋯ The protective role is played through a series of process including inflammation modulation, the reconstruction of alveolar epithelium and endothelium, and pulmonary fibrosis prevention. Therefore, SCs derived exosomes have the potential to be used for therapeutic strategies for ALI/ARDS. In this review, we discuss the present understanding of SCs derived exosomes related to ALI/ARDS and provide insights for developing a cell-free strategy for treating ALI/ARDS.