Life sciences
-
This study aimed to explore that the human neural stem cell derived extracellular vesicles (hNSC-EVs) have therapeutic effect on neuronal hypoxia-reperfusion (H/R) injured neurons in vitro by mediating the nuclear translocation of NF-E2-related factor 2 (Nrf2) to regulate the expression of downstream oxidative kinases. ⋯ At present, there is no effective therapy for CIR injury. We suggest that the hNSC-EVs could be considered a new strategy to achieve nerve repair for the treatment of neurological diseases, especially stroke.
-
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
-
Inflammatory cascade and oxidative stress play a central role in diabetic peripheral neuropathy via activation of inflammatory cytokines. Escin has potent antioxidant and anti-inflammatory properties. Hence, the present study was conducted to evaluate the effect of escin on diabetic peripheral neuropathy in streptozotocin (STZ) induced diabetes in rats. ⋯ From the results of study it can be concluded that escin can be a useful option for management of diabetic peripheral neuropathy.
-
Coronavirus Disease 2019 (COVID-19) has quickly progressed to a global health emergency. Respiratory illness is the major cause of morbidity and mortality in these patients with the disease spectrum ranging from asymptomatic subclinical infection, to severe pneumonia progressing to acute respiratory distress syndrome. There is growing evidence describing pathophysiological resemblance of SARS-CoV-2 infection with other coronavirus infections such as Severe Acute Respiratory Syndrome coronavirus and Middle East Respiratory Syndrome coronavirus (MERS-CoV). ⋯ Myocarditis is depicted as another cause of morbidity amongst COVID-19 patients. The exact mechanisms of how SARS-CoV-2 can cause myocardial injury are not clearly understood. The proposed mechanisms of myocardial injury are direct damage to the cardiomyocytes, systemic inflammation, myocardial interstitial fibrosis, interferon mediated immune response, exaggerated cytokine response by Type 1 and 2 helper T cells, in addition to coronary plaque destabilization, and hypoxia.
-
Many μ-opioid receptor (MOR)-associated proteins can regulate the MOR signaling pathway. Using a bacterial two-hybrid screen, we found that the C-terminal of the MOR associated with heat shock protein 90 isoform β (Hsp90β). Here, we explored the effect of Hsp90β on MOR signaling transduction and function. ⋯ Hsp90β is a positive co-regulator of the MOR via the activation of a G-protein-dependent and β-arrestin-dependent pathway. Hsp90β has the potential to improve the pharmacologic profile of existing opiates. It is conceivable that in future clinical treatments, the Hsp90β inhibitor, 17-AAG, could decrease the tolerance and dependence in cancer patients induced by opioids.