Clin Pharmacokinet
-
There is wide variability in the response of individuals to standard doses of drug therapy. This is an important problem in clinical practice, where it can lead to therapeutic failures or adverse drug reactions. Polymorphisms in genes coding for metabolising enzymes and drug transporters can affect drug efficacy and toxicity. ⋯ The studies discussed evaluate different regimens and tumour types and show that polymorphisms can have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in different tumours in response to different drugs. The clinical application of pharmacogenetics in cancer treatment will therefore require more detailed information of the different polymorphisms in drug-metabolising enzymes and drug transporters. Larger studies, in different ethnic populations, and extended with haplotype and linkage disequilibrium analysis, will be necessary for each anti-cancer drug separately.
-
Lamellar liposome technology has been used for several decades to produce sustained-release drug formulations for parenteral administration. Multivesicular liposomes are structurally distinct from lamellar liposomes and consist of an aggregation of hundreds of water-filled polyhedral compartments separated by bi-layered lipid septa. The unique architecture of multivesicular liposomes allows encapsulating drug with greater efficiency, provides robust structural stability and ensures reliable, steady and prolonged drug release. ⋯ Contingent on the specific formulation and manufacturing process, agents were released over a period of hours to weeks as reflected by a 2- to 400-fold increase in elimination half life. Published data further suggest that the encapsulation process preserves bioactivity of agents as delicate as proteins and supports the view that examined multivesicular liposomes were non-toxic at studied doses. The task ahead will be to examine whether the beneficial structural and pharmacokinetic properties of multivesicular liposome formulations will translate into improved clinical outcomes, either because of decreased drug toxicity or increased drug efficacy.
-
Randomized Controlled Trial
A population pharmacokinetic/pharmacodynamic analysis of regadenoson, an adenosine A2A-receptor agonist, in healthy male volunteers.
The aims of this study were to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of regadenoson (CVT-3146) in healthy, male volunteers. ⋯ The pharmacokinetics and the effects of regadenoson on heart rate were successfully described using pharmacokinetic/pharmacodynamic modelling. The lack of a correlation between the model estimates and various baseline patient demographics supports unit-based dose administration of regadenoson.
-
Review
Pharmacokinetic and pharmacodynamic characteristics of medications used for moderate sedation.
The ability to deliver safe and effective moderate sedation is crucial to the ability to perform invasive procedures. Sedative drugs should have a quick onset of action, provide rapid and clear-headed recovery, and be easy to administer and monitor. A number of drugs have been demonstrated to provide effective sedation for outpatient procedures but since each agent has its own limitations, a thorough knowledge of the available drugs is required to choose the appropriate drug, dose and/or combination regimen for individual patients. ⋯ AQUAVAN injection (fospropofol disodium), a phosphorylated prodrug of propofol, is an investigational agent possessing a unique and distinct pharmacokinetic and pharmacodynamic profile. Compared with propofol emulsion, AQUAVAN is associated with a slightly longer time to peak effect and a more prolonged pharmacodynamic effect. Advances in the delivery of sedation, including the development of new sedative agents, have the potential to further improve the provision of moderate sedation for a variety of invasive procedures.
-
Treatment of sepsis remains a significant challenge with persisting high mortality and morbidity. Early and appropriate antibacterial therapy remains an important intervention for such patients. To optimise antibacterial therapy, the clinician must possess knowledge of the pharmacokinetic and pharmacodynamic properties of commonly used antibacterials and how these parameters may be affected by the constellation of pathophysiological changes occurring during sepsis. ⋯ In conclusion, certain antibacterials can have a very high V(d), therefore leading to a low C(max) and if a high peak is needed, then this would lead to underdosing. The V(d) of certain antibacterials, namely aminoglycosides and vancomycin, changes over time, which means dosing may need to be altered over time. Some patients with serum creatinine values within the normal range can have very high drug clearances, thereby producing low serum drug levels and again leading to underdosing.