Clin Pharmacokinet
-
Antibody-drug conjugates are an emerging class of biopharmaceuticals changing the landscape of targeted chemotherapy. These conjugates combine the target specificity of monoclonal antibodies with the anti-cancer activity of small-molecule therapeutics. ⋯ Understanding the pharmacokinetics and pharmacodynamics of antibody-drug conjugates and the development of pharmacokinetic/pharmacodynamic models is indispensable, albeit challenging as there are many parameters to incorporate including the disposition of the intact antibody-drug conjugate complex, the antibody, and the drug agents following their dissociation in the body. In this review, we discuss how antibody-drug conjugates progressed over time, the challenges in their development, and how our understanding of their pharmacokinetics/pharmacodynamics led to greater strides towards successful targeted therapy programs.
-
Novel treatment options are needed to improve long-term outcomes for patients with multiple myeloma (MM). In this article, we comprehensively review the clinical pharmacology of elotuzumab, a first-in-class monoclonal anti-SLAMF7 antibody approved in combination with lenalidomide and dexamethasone (ELd) for the treatment of patients with MM and one to three prior therapies. Elotuzumab has a dual mechanism of action to specifically kill myeloma cells: binding SLAMF7 on myeloma cells facilitates natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), and direct engagement of SLAMF7 on NK cells further enhances NK cell activity. ⋯ Exposure-response analysis of patients treated with ELd demonstrated that increased elotuzumab exposure does not elevate the risk of grade 3+ adverse events (AEs) or AEs leading to discontinuation/death. Elotuzumab antidrug antibodies occurred in 18.5% of patients treated with ELd or elotuzumab plus bortezomib and dexamethasone, but were generally transient and did not affect elotuzumab efficacy or safety. A monotherapy study indicated elotuzumab does not have clinically relevant effects on QT intervals.
-
Cebranopadol is a novel first-in-class analgesic acting as a nociceptin/orphanin FQ peptide and opioid peptide receptor agonist with central analgesic activity. It is currently in clinical development for the treatment of chronic pain conditions. This trial focuses on the clinical pharmacokinetic (PK) properties of cebranopadol after oral single- and multiple-dose administration. ⋯ Cebranopadol formulated as an IR product can be used as a once-daily formulation; it reaches C max after only 4-6 h, and has a long HVD and a low PTF. Therefore, from a PK perspective, cebranopadol is an attractive treatment option for patients with chronic pain.
-
Since pregnant women are considerably underrepresented in clinical trials, information on optimal dosing in pregnancy is widely lacking. Physiologically based pharmacokinetic (PBPK) modeling may provide a method for predicting pharmacokinetic changes in pregnancy to guide subsequent in vivo pharmacokinetic trials in pregnant women, minimizing associated risks. ⋯ Pregnancy population PBPK models can provide a valuable tool to predict a priori the pharmacokinetics of predominantly renally cleared drugs in pregnant women. These models can ultimately support informed decision making regarding optimal dosing regimens in this vulnerable special population.
-
Ixazomib is an oral proteasome inhibitor, approved in USA, Canada, Australia and Europe in combination with lenalidomide and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy. We report a population pharmacokinetic model-based analysis for ixazomib that was pivotal in describing the clinical pharmacokinetics of ixazomib, to inform product labelling. Plasma concentration-time data were collected from 755 patients who received oral or intravenous ixazomib in once- or twice-weekly schedules in ten trials, including the global phase III TOURMALINE-MM1 study. ⋯ None of the additional covariates tested including body surface area (1.2-2.7 m2), sex, age (23-91 years), race, mild/moderate renal impairment and mild hepatic impairment were found to impact systemic clearance, suggesting that no dose adjustment is required based on these covariates. The geometric mean terminal disposition phase half-life was 9.5 days, steady-state volume of distribution was 543 L and systemic clearance was 1.86 L/h. The absolute bioavailability of an oral dose was estimated to be 58%.