Int J Nanomed
-
Intravascular catheter-related infections are still a major problem in health care and are associated with significant morbidity, mortality, and additional cost. The formation of microbial biofilm on catheters makes these infections particularly complicated, as microbial cells that detach from the biofilm can lead to infection, and because these microorganisms are highly resistant to many antimicrobial agents; thus, catheter removal is often required to successfully treat infection. ⋯ Currently, nanotechnology approaches seem to be among the most promising for preventing biofilm formation and resultant catheter-related bloodstream infection (especially with multi-resistant bacterial strains). In this review, current knowledge about catheter technology and design, the mechanisms of catheter-related bloodstream infection, and the insertion and care practices performed by medical staff, are discussed, along with novel, achievable approaches to infection prevention, based on nanotechnology.
-
Mechanical ventilation has been documented to paradoxically cause lung injury. As a commonly used volatile anesthetic, sevoflurane has been proven to possess antiinflammatory and antioxidative properties. This study aims to investigate the protective effects of sevoflurane on inflammation and ventilator-induced lung injury during mechanical ventilation in healthy mice. ⋯ Mechanical ventilation with high tidal volume might lead to lung injury, which could be significantly, but not completely, attenuated by sevoflurane inhalation by inhibiting the NF-κB-mediated proinflammatory cytokine generation and upregulating HO-1 expression.
-
Three multiple water-in-oil-in-water (W/O/W) nanoemulsions have been designed for potential inclusion of either lipophilic or hydrophilic drugs using a two-step emulsification process exclusively based on low-energy self-emulsification. The W/O primary emulsion was constituted by a blend of oil (medium chain triglyceride), a mixture (7:3) of two surfactants, and a 10% water phase. The surfactants were a mixture of Polysorbate-85/Labrasol(®), Polysorbate-85/Cremophor(®) EL or glycerol/Polysorbate-85. ⋯ The formulation including glycerol, investigated between 1 and 100 mg/mL concentration of nanoemulsion, did not affect cell viability. Moreover, neither chromatin condensation nor P2X7 activation was found between the 10 and 30 mg/mL final concentration of the emulsion. This last formulation would therefore be of major interest for further developments.
-
The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity. ⋯ This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard.
-
Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. ⋯ The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.