The Journal of surgical research
-
Acute lung injury is a common complication of gram-negative sepsis. Pulmonary hypertension and increased lung vascular permeability are central features of lung injury following experimental bacteremia. Platelet-activating factor is a prominent proinflammatory mediator during bacterial sepsis. Our previous studies have demonstrated that exogenous administration of platelet-activating factor (PAF) induces pulmonary edema without causing pulmonary hypertension. Interestingly, inhibition of PAF activity during Escherichia coli bacteremia prevents the development of both pulmonary hypertension and pulmonary edema. These data suggest that PAF contributes to pulmonary hypertension during sepsis, but that this is unlikely to be a direct vascular effect of PAF. The goal of the present study was to investigate the mechanism by which acute E. coli bacteremia induces pulmonary injury and to define the role that PAF plays in this injury. We hypothesized that the effects of PAF on pulmonary hypertension during bacteremia are due to the effects of PAF on other vascular mediators. Several studies suggest that PAF induces the expression of endothelin-1 (ET), a potent peptide vasoconstrictor. Further, our previous studies have implicated ET as a central mediator of systemic vasoconstriction during bacteremia. We therefore sought to assess whether ET is modulated by PAF. E. coli has also been demonstrated to increase endothelial production of nitric oxide (NO), which contributes to maintenance of basal vascular tone in the pulmonary circulation. We hypothesized that PAF might increase pulmonary vascular resistance during bacteremia by activating neutrophils, increasing expression of ET, and decreasing the tonic release of NO. Furthermore, we hypothesized that hypoxic vasoconstriction did not contribute to pulmonary vasoconstriction during the first 120 min of E. coli bacteremia. ⋯ These data support the hypothesis that E. coli bacteremia rapidly induces pulmonary hypertension stimulated by PAF and mediated at least in part by endothelin-1 and neutrophil activation and sequestration in the lung. Microvascular injury with leak is also mediated by PAF during E. coli bacteremia, but the time course of resultant hypoxemia and hemoconcentration is slower than that of pulmonary hypertension. The contribution of hypoxic vasoconstriction in exacerbating pulmonary hypertension in gram-negative sepsis is probably a late
-
To assess the effects of gabexate mesilate (FOY), a protease inhibitor, on a canine model of pulmonary ischemia-reperfusion injury. FOY has been applied clinically to treat acute pancreatitis and disseminated intravascular coagulation (DIC) and has been found to suppress some leukocyte-mediated tissue injuries in both in vitro and in vivo studies. ⋯ FOY can attenuate the ischemia-reperfusion-induced acute lung injury in dogs by ameliorating the degree of alveolar membrane permeability change, neutrophil aggregation, and activation. FOY treatment starting before ischemia attenuated this injury to a significantly higher degree than its use after ischemia. However, the effect of FOY may be partial because it cannot alter the hemodynamics or aerodynamics as prominently as other parameters in this type of lung injury. Concomitant use of FOY with other agents will have additive or synergic effects in preventing lung ischemia-reperfusion injury.
-
We have previously reported that atrial trabeculae from patients taking oral sulfonylurea hypoglycemic agents cannot be preconditioned by transient ischemia, which may, in part, explain the increased cardiovascular mortality historically associated with the use of these agents (J. C. Cleveland et al., 1997, Circulation 96, 29-32). ⋯ Ca(2+) pretreatment increased postischemic human myocardial developed force to 35.3 +/- 2.9 %BDF in these patients (P < 0.05 vs I/R, ANOVA and Bonferroni/Dunn). We conclude that atrial muscle from patients taking oral hypoglycemic agents can be preconditioned with exogenous Ca(2+). This therapy may offer a clinically relevant means to precondition the myocardium of diabetics taking oral hypoglycemic agents prior to clinical interventions such as coronary angioplasty or cardiac bypass.
-
Hypervolemic hemodilution has been proposed as an alternative to normovolemic hemodilution to reduce homologous blood transfusions. So far, convincing data supporting this concept are unknown. ⋯ Thus, hypervolemic hemodilution cannot replace normovolemic hemodilution to reduce homologous transfusions, but for blood losses <40% of blood volume hypervolemic hemodilution appears to be superior.
-
21-Aminosteroids are potent anti-inflammatory and antioxidant drugs that provide remarkable endothelial protection in different models of tissue ischemia-reperfusion and inflammation. The effects of 21-aminosteroids in sepsis, a highly inflammatory condition leading to panendothelial activation and injury, are largely uninvestigated. We therefore explored the effects of the 21-aminosteroid U74386G on hepatic blood flow, endothelial cell function, and sinusoidal structure in a canine model of fluid-resuscitated, hyperdynamic endotoxic shock. ⋯ U74389G can preserve the functional and structural integrity of endothelial cells in the hepatic sinusoid during hyperdynamic endotoxic shock. This endothelial-protective effect was associated with a better maintained hepatic blood flow and a significant attenuation of inflammatory liver injury.