The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2005
Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
Opioids are potent analgesics, but the sites of their action and cellular mechanisms are not fully understood. The central nucleus of the amygdala (CeA) is important for opioid analgesia through the projection to the periaquaductal gray (PAG). In this study, we examined the effects of mu opioid receptor stimulation on inhibitory and excitatory synaptic inputs to PAG-projecting CeA neurons retrogradely labeled with a fluorescent tracer injected into the ventrolateral PAG of rats. ⋯ The IPSCs were blocked by the GABA(A) receptor antagonist bicuculline, whereas the EPSCs were largely abolished by the non-N-methyl-d-aspartate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. The immunoreactivity of mu opioid receptors was colocalized with synaptophysin, a presynaptic marker, in close appositions to labeled CeA neurons. These results suggest that activation of mu opioid receptors on presynaptic terminals primarily attenuates GABAergic synaptic inputs to PAG-projecting neurons in the CeA.
-
J. Pharmacol. Exp. Ther. · Feb 2005
The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist ly379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in rats.
The highly selective metabotropic glutamate (mGlu)2/3 receptor agonist LY379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] completely suppresses rapid eye movement (REM) sleep and strongly depresses theta (6-10 Hz) and high-frequency (10-60 Hz) power in the waking and nonrapid eye movement (NREM) EEG, effects consistent with depressed brain excitation (arousal). We hypothesized the selective mGlu2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] given alone would 1) increase arousal, producing sleep-wake EEG effects opposite those of LY379268, and 2) block/reverse the effects of LY379268 when the drugs are coadministered. Rats with implanted electrodes were injected with 1, 5, or 10 mg/kg LY341495 at hour 5.5 of the dark period. ⋯ The coadministration experiment demonstrates that LY341495 is selective in vivo since it dose-dependently attenuates or reverses the sleep-wake EEG effects of the highly selective mGlu2/3 receptor agonist LY379268. The capacity of mGlu2/3 receptor agonists and antagonists to alter the sleep wake balance suggests they could be developed to enhance sleep or sustain arousal. Their opposing actions on theta EEG could test the putative role of these oscillations in memory consolidation.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Endogenous regulator of g protein signaling proteins reduce {mu}-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells.
Chronic exposure of cells to mu-opioid agonists leads to tolerance which can be measured by a reduced ability to activate signaling pathways in the cell. Cell signaling through inhibitory G proteins is negatively regulated by RGS (regulator of G protein signaling) proteins. Here we examine the hypothesis that the GTPase accelerating activity of RGS proteins, by altering the lifetime of Galpha and Gbetagamma, plays a role in the development of cellular tolerance to mu-opioids. ⋯ Exposure to high concentrations of morphine or the peptidic mu-opioid agonist DAMGO led to a tolerance to inhibit adenylyl cyclase activity in both cell types with a rapid (30 min) and a slower component. Using a submaximal concentration of DAMGO to induce a reduced level of tolerance, a shift in the concentration-effect curve for DAMGO to inhibit adenylyl cyclase activity was seen in the cells expressing RGS-insensitive Galpha(o), but not in the cells expressing RGS-sensitive Galpha(o), which can be partly explained by an increased supersensitization of the adenylyl cyclase response. The results show that RGS proteins endogenously expressed in C6 cells reduce agonist-induced mu-opioid receptor desensitization, down-regulation, and sensitivity to tolerance to inhibit adenylyl cyclase activity.
-
J. Pharmacol. Exp. Ther. · Feb 2005
{beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents.
Deposition of beta-amyloid peptide (Abeta) and hyperphosphorylation of the tau protein are associated with neuronal dysfunction and cell death in Alzheimer's disease. Although the relationship between these two processes is not yet understood, studies have shown that both in vitro and in vivo exposure of neurons to Abeta leads to tau hyperphosphorylation and neuronal dystrophy. We previously reported that the microtubule-stabilizing drug paclitaxel (Taxol) protects primary neurons against toxicity induced by the Abeta(25-35) peptide. ⋯ Other taxanes and three structurally diverse microtubule-stabilizing compounds also significantly increased survival of Abeta-treated cultures. At concentrations below 100 nM, the drugs that protected the neurons did not produce detectable toxicity when added to the cultures alone. Although multiple mechanisms are likely to contribute to the neuronal cell death induced by oligomeric or fibrillar forms of Abeta, low concentrations of drugs that preserve the integrity of the cytoskeletal network may help neurons survive the toxic cascades initiated by these peptides.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.
We characterized the effects of the volatile anesthetic isoflurane on the ion currents that contribute to the action potential (AP) in isolated rat neurohypophysial (NHP) nerve terminals using patch-clamp electrophysiology. Mean resting membrane potential and AP amplitude were -62.3 +/- 4.1 and 69.2 +/- 2.9 mV, respectively, in NHP terminals. Two components of outward K(+) current (I(K)) were identified in voltage-clamp recordings: a transient I(K) and a sustained I(K) with minimal inactivation. ⋯ The isoflurane IC(50) for peak I(K) was 0.83 mM and for sustained I(K) was 0.73 mM, with no effect on the voltage dependence of activation. The results indicate that multiple voltage-gated ion channels (Na(+) > K(+) > Ca(2+)) in NHP terminals, although not typical central nervous system terminals, are inhibited by the volatile general anesthetic isoflurane. The net inhibitory effects of volatile anesthetics on nerve terminal action potentials and excitability result from integrated actions on multiple voltage-gated currents.