The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Jul 1999
Expression of multiple alpha1-adrenoceptors on vascular smooth muscle: correlation with the regulation of contraction.
Previous work has shown that the genes encoding each alpha1-adrenoceptor subtype are coexpressed throughout the peripheral vascular system. We have evaluated subtype-selective antibodies as tools to determine the extent of protein expression in arteries. The alpha1A-, alpha1B-, and alpha1D-adrenoceptors were detected in the medial layer of the aorta, caudal, femoral, iliac, renal, superior mesenteric, and mesenteric resistance arteries. ⋯ The expression of each alpha1-adrenoceptor was significantly decreased by in vivo application of antisense oligonucleotides targeted against each subtype. Inhibition of the expression of only one, the alpha1A in renal and the alpha1D in femoral arteries, reduced the contractile response to naphazoline. The results show: 1) subtype-selective antibodies can be used in tissues and cell culture to localize the alpha1-adrenoceptor subtypes, 2) in addition to expression on the cell surface, the alpha1-adrenoceptors are expressed intracellularly, and 3) despite expression of all adrenoceptors, a single subtype mediates the contractile response in the femoral and renal arteries.
-
J. Pharmacol. Exp. Ther. · Jul 1999
Moxonidine, a selective alpha2-adrenergic and imidazoline receptor agonist, produces spinal antinociception in mice.
alpha2-Adrenergic receptor (AR)-selective compounds produce antihypertensive and antinociceptive effects. Moxonidine alleviates hypertension in multiple species, including humans. This study demonstrates that intrathecally administered moxonidine produces antinociception in mice. ⋯ Conversely, absence of clonidine efficacy in D79N-alpha2a mice implies that alpha2aAR activation enables clonidine-induced antinociception. When clinically administered, moxonidine induces fewer side effects relative to clonidine; moxonidine-induced antinociception appears to involve a different alpha2AR subtype than clonidine-induced antinociception. Therefore, moxonidine may prove to be an effective treatment for pain with an improved side effect profile.
-
J. Pharmacol. Exp. Ther. · Jul 1999
Potent antihyperalgesic activity without tolerance produced by glycine site antagonist of N-methyl-D-aspartate receptor GV196771A.
Central sensitization is a condition of enhanced excitability of spinal cord neurons that contributes to the exaggerated pain sensation associated with chronic tissue or nerve injury. N-methyl-D-aspartate (NMDA) receptors are thought to play a key role in central sensitization. We have tested this hypothesis by characterizing in vitro and in vivo a novel antagonist of the NMDA receptor acting on its glycine site, GV196771A. ⋯ These antihyperalgesic properties were not accompanied by development of tolerance. These observations strengthen the view that NMDA receptors play a key role in the events underlying plastic phenomena, including hyperalgesia. Moreover, antagonists of the NMDA glycine site receptor could represent a new analgesic class, effective in conditions not sensitive to classical opioids.
-
J. Pharmacol. Exp. Ther. · Jun 1999
Acute pentylenetetrazol injection reduces rat GABAA receptor mRNA levels and GABA stimulation of benzodiazepine binding with No effect on benzodiazepine binding site density.
The effects of a single convulsive dose of pentylenetetrazol (PTZ, 45 mg/kg i.p.) on rat brain gamma-aminobutyric acid type A (GABAA) receptors were studied. Selected GABAA receptor subunit mRNAs were measured by Northern blot analysis (with beta-actin mRNA as a standard). Four hours after PTZ, the GABAA receptor gamma2-mRNA was decreased in hippocampus, cerebral cortex, and cerebellum; alpha1-mRNA was decreased in cerebellum; and beta2 subunit mRNA was decreased in cortex and cerebellum. ⋯ There was no PTZ effect on specific [3H]FNP binding. However, there was a significant reduction in the stimulation of [3H]FNP binding by GABA. The results showed that an acute injection of PTZ caused transient changes in GABAA receptor mRNA levels without altering receptor number but affected the coupling mechanism between the GABA and benzodiazepine sites of the GABAA receptor.
-
J. Pharmacol. Exp. Ther. · Jun 1999
MEN 11270, A novel selective constrained peptide antagonist with high affinity at the human B2 kinin receptor.
We investigated the pharmacological profile of MEN 11270, or H-D-Arg-Arg-Pro-Hyp-Gly-Thi-c(Dab-DTic-Oic-Arg)c(7gamma-10 alpha), a conformationally constrained derivative of the B2 kinin receptor antagonist Icatibant. MEN 11270 bound with high-affinity to the B2 kinin receptor constitutively expressed by WI38 human fibroblasts, inhibiting 3H-bradykinin (BK) with a pKi value of 10.3 +/- 0.08 (n = 5). The rank order of affinity of several peptide and nonpeptide antagonists was also assessed: Icatibant (pKi = 10.6) approximately MEN 11270 (pKi = 10.3) approximately B9430 (pKi = 10.0) > B9858 (pKi = 8.0) > FR173657 (pKi = 7.6) > WIN64338 (pKi = 7.2) > Lys-[des-Arg9, Leu8]-BK (pKi < 6) > [des-Arg9,Leu8]-BK (pKi < 5). ⋯ The Schild plot was linear (slope 0.95 +/- 0.11), consistent with a competitive antagonism. In the same bioassay, MEN 11270 (10 microM) did not affect the concentration-response curve to the B1 agonist Lys-[des-Arg9]-BK nor the contractile responses elicited by noradrenaline or serotonin. These findings indicate MEN 11270 as an antagonist at the human B2 kinin receptor, with potency and selectivity comparable to those of the linear peptide antagonist, supporting the hypothesis that a constrained C-terminal beta-turn conformation preserves a high affinity for the interaction of Icatibant with the B2 kinin receptor.