The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · May 2014
Casein kinase II inhibition reverses pain hypersensitivity and potentiated spinal N-methyl-D-aspartate receptor activity caused by calcineurin inhibitor.
Clinically used calcineurin inhibitors, including tacrolimus (FK506) and cyclosporine A, can induce calcineurin inhibitor-induced pain syndrome (CIPS), which is characterized as severe pain and pain hypersensitivity. Increased synaptic N-methyl-D-aspartate receptor (NMDAR) activity in the spinal dorsal horn plays a critical role in the development of CIPS. Casein kinase II (CK2), a serine/threonine protein kinase, can regulate synaptic NMDAR activity in the brain. ⋯ In addition, intrathecal injection of DRB or TBB dose-dependently reversed tactile allodynia and mechanical hyperalgesia in FK506-treated rats. Collectively, our findings indicate that CK2 inhibition abrogates pain hypersensitivity and increased pre- and postsynaptic NMDAR activity in the spinal cord caused by calcineurin inhibitors. CK2 inhibitors may represent a new therapeutic option for the treatment of CIPS.
-
J. Pharmacol. Exp. Ther. · May 2014
Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.
The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). ⋯ The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and transformation of human lung fibroblasts and showed antifibrotic and anti-inflammatory activity in two animal models of pulmonary fibrosis. These results suggest that nintedanib may impact the progressive course of fibrotic lung diseases such as idiopathic pulmonary fibrosis.
-
J. Pharmacol. Exp. Ther. · Apr 2014
Soluble guanylyl cyclase (sGC) degradation and impairment of nitric oxide-mediated responses in urethra from obese mice: reversal by the sGC activator BAY 60-2770.
Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4-(trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity. ⋯ Reactive-oxygen species (ROS) production was enhanced, but protein expression of β1 second guanylate cyclase subunit was reduced in USM from obese mice, both of which were restored by BAY 60-2770 treatment. In conclusion, impaired USM relaxation in obese mice is associated with ROS generation and down-regulation of sGC-cGMP signaling. Prevention of sGC degradation by BAY 60-2770 ameliorates the impairment of urethral relaxations in obese mice.
-
J. Pharmacol. Exp. Ther. · Apr 2014
Novel TRPM8 antagonist attenuates cold hypersensitivity after peripheral nerve injury in rats.
Abnormal cold sensitivity is a common feature of a range of neuropathies. In the murine somatosensory system, multiple aspects of cold sensitivity are dependent on TRPM8, both short term and in response to peripheral nerve injury. The specialized nature of cold-sensitive afferents and the restricted expression of TRPM8 render it an attractive target for the treatment of cold hypersensitivity. ⋯ No effect on neuronal responses to mechanical and heat stimulation was observed. In addition, M8-An also attenuated behavioral responses to cold but not mechanical stimulation after nerve ligation without affecting the uninjured contralateral response. The data presented here support a contribution of TRPM8 to the pathophysiology of cold hypersensitivity in this model and highlight the potential of the pharmacological block of TRPM8 in alleviating the associated symptoms.
-
J. Pharmacol. Exp. Ther. · Mar 2014
AS1069562, the (+)-isomer of indeloxazine, exerts analgesic effects in a rat model of neuropathic pain with unique characteristics in spinal monoamine turnover.
AS1069562 [(R)-2-[(1H-inden-7-yloxy)methyl]morpholine monobenzenesulfonate] is the (+)-isomer of indeloxazine, which had been used clinically for the treatment of cerebrovascular diseases with multiple pharmacological actions, including serotonin (5-HT) and norepinephrine (NE) reuptake inhibition. Here we investigated the analgesic effects of AS1069562 in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and the spinal monoamine turnover. These effects were compared with those of the antidepressants duloxetine and amitriptyline. ⋯ In a gastric emptying study, AS1069562 affected gastric emptying at the same dose that exerted analgesia in CCI rats. On the other hand, duloxetine and amitriptyline significantly reduced gastric emptying at lower doses than those that exerted analgesic effects. These results indicate that AS1069562 broadly improved various types of neuropathic pain-related behavior in CCI rats with unique characteristics in spinal monoamine turnover, suggesting that AS1069562 may have potential as a treatment option for patients with neuropathic pain, with a different profile from currently available antidepressants.