The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2014
Randomized Controlled Trial Comparative StudyA double blind, within subject comparison of spontaneous opioid withdrawal from buprenorphine versus morphine.
Preliminary evidence suggests that there is minimal withdrawal after the cessation of chronically administered buprenorphine and that opioid withdrawal symptoms are delayed compared with those of other opioids. The present study compared the time course and magnitude of buprenorphine withdrawal with a prototypical μ-opioid agonist, morphine. Healthy, out-of-treatment opioid-dependent residential volunteers (N = 7) were stabilized on either buprenorphine (32 mg/day i.m.) or morphine (120 mg/day i.m.) administered in four divided doses for 9 days. ⋯ Subjective reports of morphine withdrawal resolved on average by day 7. There was minimal evidence of buprenorphine withdrawal on any measure. In conclusion, spontaneous withdrawal from high-dose buprenorphine appears subjectively and objectively milder compared with that of morphine for at least 18 days after drug cessation.
-
J. Pharmacol. Exp. Ther. · Feb 2014
Comparative StudyAntinociceptive effects of central administration of the endogenous cannabinoid receptor type 1 agonist VDPVNFKLLSH-OH [(m)VD-hemopressin(α)], an N-terminally extended hemopressin peptide.
The cannabinoid system has been demonstrated to modulate the acute and chronic pain of multiple origins. Mouse VD-hemopressin(α) [(m)VD-Hpα], an 11-residue α-hemoglobin-derived peptide, was recently reported to function as a selective agonist of the cannabinoid receptor type 1 (CB₁) in vitro. To characterize its behavioral and physiological properties, we investigated the in vivo effects of (m)VD-Hpα in mice. ⋯ In addition, central injection of (m)VD-Hpα dose-dependently stimulated food consumption. These findings demonstrate that this novel cannabinoid peptide agonist induces CB₁-mediated central antinociception with some CNS effects, which further supports a CB₁ agonist character of (m)VD-Hpα. Moreover, the current study will be helpful to understand the in vivo properties of the endogenous peptide agonist of the cannabinoid CB₁ receptor.
-
J. Pharmacol. Exp. Ther. · Jan 2014
Comparative StudyThe unique α4+/-α4 agonist binding site in (α4)3(β2)2 subtype nicotinic acetylcholine receptors permits differential agonist desensitization pharmacology versus the (α4)2(β2)3 subtype.
Selected nicotinic agonists were used to activate and desensitize high-sensitivity (HS) (α4)2(β2)3) or low-sensitivity (LS) (α4)3(β2)2) isoforms of human α4β2-nicotinic acetylcholine receptors (nAChRs). Function was assessed using (86)Rb(+) efflux in a stably transfected SH-EP1-hα4β2 human epithelial cell line, and two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing concatenated pentameric HS or LS α4β2-nAChR constructs (HSP and LSP). Unlike previously studied agonists, desensitization by the highly selective agonists A-85380 [3-(2(S)-azetidinylmethoxy)pyridine] and sazetidine-A (Saz-A) preferentially reduced α4β2-nAChR HS-phase versus LS-phase responses. ⋯ Thus, recruitment of the α4(+)/(-)α4 site at higher agonist concentrations appears to augment otherwise-similar function mediated by the pair of α4(+)/(-)β2 sites shared by both isoforms. These studies elucidate the receptor-level differences underlying the differential pharmacology of the two α4β2-nAChR isoforms, and demonstrate that HS versus LS α4β2-nAChR activity can be selectively manipulated using pharmacological approaches. Since α4β2 nAChRs are the predominant neuronal subtype, these discoveries likely have significant functional implications, and may provide important insights for drug discovery and development.
-
J. Pharmacol. Exp. Ther. · Dec 2013
Nerve injury increases GluA2-lacking AMPA receptor prevalence in spinal cords: functional significance and signaling mechanisms.
The glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are critically involved in the excitatory synaptic transmission, and blocking AMPARs at the spinal level reverses neuropathic pain. However, little is known about changes in the composition of synaptic AMPARs in the spinal dorsal horn after peripheral nerve injury. AMPARs lacking the GluA2 subunit are permeable to Ca(2+), and their currents show unique inward rectification. ⋯ In addition, blocking GluA2-lacking AMPARs at the spinal cord level reduced nerve injury-induced pain hypersensitivity. Our study suggests that nerve injury increases GluA2 internalization and the prevalence of GluA2-lacking AMPARs in the spinal dorsal horn to maintain chronic neuropathic pain. Increased prevalence of spinal GluA2-lacking AMPARs in neuropathic pain is mediated by NMDARs and subsequent stimulation of calpain and calcineurin signaling.
-
J. Pharmacol. Exp. Ther. · Dec 2013
The delta-opioid receptor is sufficient, but not necessary, for spinal opioid-adrenergic analgesic synergy.
Spinal administration of opioid and α2-adrenergic receptor (α2AR) agonists produces analgesia, and agonists interact synergistically when coadministered. The molecular mechanism underlying this synergy is largely unknown. Pharmacological studies have identified both the delta and the mu-opioid receptors (DOR and MOR) as candidate receptors capable of interacting synergistically with α2AR agonists. ⋯ Clonidine was synergistic with morphine in both mouse strains. DAMGO did not synergize with clonidine in either strain. These findings confirm that although other opioid receptors can interact synergistically with α2AR agonists, DOR is sufficient for spinal opioid-adrenergic interactions.