The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Dec 2013
Spinal-supraspinal and intrinsic μ-opioid receptor agonist-norepinephrine reuptake inhibitor (MOR-NRI) synergy of tapentadol in diabetic heat hyperalgesia in mice.
Tapentadol is a μ-opioid receptor (MOR) agonist and norepinephrine reuptake inhibitor (NRI) with established efficacy in neuropathic pain in patients and intrinsic synergistic interaction of both mechanisms as demonstrated in rodents. In diabetic mice, we analyzed the central antihyperalgesic activity, the occurrence of site-site interaction, as well as the spinal contribution of opioid and noradrenergic mechanisms in a hotplate test. Tapentadol (0.1-3.16 µg/animal) showed full efficacy after intrathecal as well as after intracerebroventricular administration (ED50 0.42 µg/animal i.t., 0.18 µg/animal i.c.v.). ⋯ Spinal administration of the opioid antagonist naloxone or the α2-adrenoceptor antagonist yohimbine before systemic administration of equianalgesic doses of tapentadol (1 mg/kg i.p.) or morphine (3.16 mg/kg i.p.) revealed pronounced influence on opioidergic and noradrenergic pathways for both compounds. Tapentadol was more sensitive toward both antagonists than was morphine, with median effective dose values of 0.75 and 1.72 ng/animal i.t. naloxone and 1.56 and 2.04 ng/animal i.t. yohimbine, respectively. It is suggested that the antihyperalgesic action of systemically administered tapentadol is based on opioid spinal-supraspinal synergy, as well as intrinsic spinally mediated MOR-NRI synergy.
-
J. Pharmacol. Exp. Ther. · Dec 2013
The delta-opioid receptor is sufficient, but not necessary, for spinal opioid-adrenergic analgesic synergy.
Spinal administration of opioid and α2-adrenergic receptor (α2AR) agonists produces analgesia, and agonists interact synergistically when coadministered. The molecular mechanism underlying this synergy is largely unknown. Pharmacological studies have identified both the delta and the mu-opioid receptors (DOR and MOR) as candidate receptors capable of interacting synergistically with α2AR agonists. ⋯ Clonidine was synergistic with morphine in both mouse strains. DAMGO did not synergize with clonidine in either strain. These findings confirm that although other opioid receptors can interact synergistically with α2AR agonists, DOR is sufficient for spinal opioid-adrenergic interactions.
-
J. Pharmacol. Exp. Ther. · Nov 2013
Rolipram improves renal perfusion and function during sepsis in the mouse.
Microcirculatory dysfunction is correlated with increased mortality among septic patients and is believed to be a major contributor to the development of acute kidney injury (AKI). Rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, has been shown to reduce microvascular permeability and in the kidney, increase renal blood flow (RBF). This led us to investigate its potential to improve the renal microcirculation and preserve renal function during sepsis using a murine cecal ligation and puncture (CLP) model to induce sepsis. ⋯ It is noteworthy that delayed treatment with rolipram at 6 hours after CLP restored the renal microcirculation, reduced blood urea nitrogen and serum creatinine, and increased glomerular filtration rate at 18 hours. However, delayed treatment with rolipram did not reduce serum nitrate/nitrite levels, a marker of nitric oxide production, nor reactive nitrogen species generation in renal tubules. These data show that restoring the microcirculation with rolipram, even with delayed treatment, is enough to improve renal function during sepsis despite the generation of oxidants and suggest that PDE4 inhibitors should be evaluated further for their ability to treat septic-induced AKI.
-
J. Pharmacol. Exp. Ther. · Nov 2013
Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.
High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. ⋯ However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.
-
J. Pharmacol. Exp. Ther. · Nov 2013
In vivo activity of norhydrocodone: an active metabolite of hydrocodone.
Hydrocodone is primarily metabolized to hydromorphone and norhydrocodone. Although hydromorphone is a known active metabolite of hydrocodone, the in vivo activity of norhydrocodone is not well documented. In the current study, the pharmacodynamics of norhydrocodone were evaluated and compared with hydrocodone and hydromorphone. ⋯ Norhydrocodone and hydromorphone were ∼3.7 to 4.6-fold more potent than hydrocodone in inducing seizure activity. Naltrexone did not antagonize opioid-induced seizure activity, suggesting that seizures were not opioid receptor-mediated. Taken together, norhydrocodone is an active metabolite of hydrocodone and may contribute to therapeutic and toxic effects following hydrocodone administration.