The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Sep 2013
Stronger antinociceptive efficacy of opioids at the injured nerve trunk than at its peripheral terminals in neuropathic pain.
Activation of opioid receptors on peripheral sensory neurons has the potential for safe pain control, as it lacks centrally mediated side effects. While this approach often only partially suppressed neuropathic pain in animal models, opioids were mostly applied to animal paws although neuropathy was induced at the nerve trunk. Here we aimed to identify the most relevant peripheral site of opioid action for efficient antinociception in neuropathy. ⋯ Thus, opioids might not be effective against spontaneous pain, but they improve heat and mechanical hypersensitivity in neuropathy. Importantly, efficient alleviation of hypersensitivity is governed by peripheral opioid receptors at the injured nerve trunk rather than at its peripheral terminals. Identifying the primary action site of analgesics is important for the development of adequate pain therapies.
-
J. Pharmacol. Exp. Ther. · Jul 2013
Comparative StudyEffects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/μ-opioid receptor ligands in mouse models of neuropathic and inflammatory pain.
Nociceptin/orphanin FQ peptide receptor (NOP) agonists produce antinociceptive effects in animal models after spinal administration and potentiate μ-opioid receptor (MOP)-mediated antinociception. This study determined the antinociceptive effects of spinally administered bifunctional NOP/MOP ligands and the antinociceptive functions of spinal NOP and MOP receptors in mice. Antinociceptive effects of bifunctional NOP/MOP ligands BU08028 [(2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol] and SR16435 [1-(1-(2,3,3α,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one] were pharmacologically compared with the putative bifunctional ligand buprenorphine, selective NOP agonist SCH221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol] and selective MOP agonist morphine in neuropathic and inflammatory pain models. ⋯ In conclusion, both NOP and MOP receptors in the spinal cord independently drive antinociception in mice. Spinally administered bifunctional NOP/MOP ligands not only can effectively attenuate neuropathic and inflammatory pain, but also have higher antinociceptive potency with reduced tolerance development to analgesia. Such ligands therefore display a promising profile as spinal analgesics.
-
J. Pharmacol. Exp. Ther. · Jul 2013
A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.
The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. ⋯ CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.
-
J. Pharmacol. Exp. Ther. · Jun 2013
Pharmacodynamic effects of a D-amino acid oxidase inhibitor indicate a spinal site of action in rat models of neuropathic pain.
Inhibition of d-amino acid oxidase (DAAO) activity is a potential target for the treatment of chronic pain. Here we characterized the effects of systemic administration of the DAAO inhibitor 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN) in rat models of neuropathic and inflammatory pain. Oral administration of SUN dose dependently attenuated tactile allodynia induced by ligation of the L5 spinal nerve (SNL) and similarly reversed thermal hyperalgesia produced by chronic constriction injury. ⋯ Oral SUN reduced spontaneous activity in both central and peripheral recordings at doses and pretreatment times that corresponded to reduced mechanical allodynia in behavioral experiments. After intravenous administration of SUN, the onset of action for this central effect was rapid (maximal effects within 30 minutes), but was abolished by severing afferent inputs to the dorsal horn. Overall, these results indicate that inhibition of DAAO in peripheral afferent spinal circuits reduced spontaneous neuronal activity to attenuate pain-related behaviors in rat models of neuropathic and inflammatory pain.
-
J. Pharmacol. Exp. Ther. · Jun 2013
Interactions between μ-opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration.
Cannabinoid receptor agonists enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combinations of these drugs might enhance therapeutic effectiveness (e.g., analgesia). However, it is not clear whether combinations of these drugs also enhance abuse or dependence liability. This experiment examined whether combinations of cannabinoids and opioids that enhance antinociception also increase abuse-related effects by studying the effects of the cannabinoid receptor agonists 2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol (CP 55,940) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212) on the antinociceptive, discriminative stimulus, and positive reinforcing effects of μ-opioid receptor agonists in rhesus monkeys. ⋯ In monkeys (n = 3) discriminating 3.2 mg/kg morphine, CP 55,940 (0.01-0.032 mg/kg s.c.) and WIN 55,212 (0.1-1.78 mg/kg s.c.) attenuated the discriminative stimulus effects of morphine, shifting the dose-effect curve to the right. In monkeys (n = 4) self-administering heroin (0.32-32.0 µg/kg/infusion i.v.), CP 55,940 (0.001-0.032 mg/kg s.c.), and WIN 55,212 (0.1-1.0 mg/kg s.c.) shifted the heroin dose-effect curve rightward and downward. Cannabinoid receptor agonists CP 55,940 and WIN 55,212 enhanced the antinociceptive effects but not the discriminative stimulus or positive reinforcing effects of μ-opioid receptor agonists in rhesus monkeys, supporting the view that combining cannabinoid and opioid receptor agonists might result in enhanced treatment effectiveness for pain without similarly enhancing abuse and dependence liability.