The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Nov 2008
Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.
Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p./day) on 4 alternate days to induce mechanical hypersensitivity (mechanical allodynia). ⋯ Administration of either the CB(1) or CB(2) antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the Cremophor EL vehicle in lieu of paclitaxel, whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.
-
J. Pharmacol. Exp. Ther. · Nov 2008
Sustained inhibition of neurotransmitter release from nontransient receptor potential vanilloid type 1-expressing primary afferents by mu-opioid receptor activation-enkephalin in the spinal cord.
Removing transient receptor potential vanilloid type 1 (TRPV1)-expressing primary afferent neurons reduces presynaptic mu-opioid receptors but potentiates opioid analgesia. However, the sites and underlying cellular mechanisms for this paradoxical effect remain uncertain. In this study, we determined the presynaptic and postsynaptic effects of the mu-opioid receptor agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO) using whole-cell patch-clamp recordings of lamina II neurons in rat spinal cord slices. ⋯ However, the concentration response and the duration of the effects of DAMGO on G protein-coupled inwardly rectifying K+ currents in lamina II neurons were not significantly different between vehicle- and RTX-treated groups. These data suggest that stimulation of mu-opioid receptors on non-TRPV1 afferent terminals causes extended inhibition of neurotransmitter release to spinal dorsal horn neurons. The differential effect of mu-opioid receptor agonists on different phenotypes of primary afferents provides a cellular basis to explain why the analgesic action of opioids on mechanonociception is prolonged when TRPV1-expressing primary afferents are removed.
-
J. Pharmacol. Exp. Ther. · Oct 2008
Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways.
Pharmacological studies have suggested the existence of ATP-sensitive K(+) (K(ATP)) channel as a therapeutic target in urinary bladders; however, electrical properties have not yet been shown. Patch-clamp techniques were applied to investigate the properties of K(ATP) channels in pig detrusor cells. In whole-cell configuration, levcromakalim, a K(ATP) channel opener, induced a long-lasting outward current in a concentration-dependent manner. ⋯ In reverse transcription-polymerase chain reaction, K(+) channel pore 6.1 and sulfonylurea receptor (SUR)2A were predominant in pig detrusor cells. The 12 pS K(+) channel activated by levcromakalim in pig detrusor smooth muscle cells is a K(ATP) channel. The predominant expression of SUR2A can account for the lack of effect of neurotransmitters related to cAMP.
-
J. Pharmacol. Exp. Ther. · Sep 2008
Comparative StudyMorphine deprivation increases self-administration of the fast- and short-acting mu-opioid receptor agonist remifentanil in the rat.
Opiate dependence and withdrawal have long been hypothesized to enhance the reinforcing effects of opiates; however, opiate agonist self-administration in these states has yet to be systematically assessed. To address this issue, the reinforcing property of the short-acting mu-opioid agonist, remifentanil, was assessed in morphine-dependent (MD), morphine-dependent and -withdrawn (MW), and nondependent, control (C) rats. Dependence was established by twice daily administration of increasing doses of morphine for 4 days (10, 20, 30, and 40 mg/kg s.c.) and then maintained with a daily injection of the large dose. ⋯ Remifentanil self-administration (0.4, 0.8, 1.6, 3.2, or 6.4 mug/kg/infusion) was assessed over 20 successive, daily, 1-h sessions, either 12 or 24 h after the maintenance dose of morphine. Compared with the control group, the MD group demonstrated suppressed remifentanil self-administration, whereas the MW group exhibited enhanced responding for every dose of remifentanil. The increased responding observed in the MW group compared with the control and MD groups resulted in an upward shift in the remifentanil dose-response curve, an effect that was expressed only after repeated exposure to the contingency, demonstrating that morphine withdrawal ultimately enhances the reinforcing effects of remifentanil.
-
J. Pharmacol. Exp. Ther. · Sep 2008
Comparative Study(R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo.
The transient receptor potential vanilloid (TRPV) 1 receptor, a nonselective cation channel expressed on peripheral sensory neurons and in the central nervous system, plays a key role in pain. TRPV1 receptor antagonism is a promising approach for pain management. In this report, we describe the pharmacological and functional characteristics of a structurally novel TRPV1 antagonist, (R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102), which has entered clinical trials. ⋯ This effect is enhanced in a rat model of inflammatory pain induced by administration of complete Freund's adjuvant. Therefore, ABT-102 potently blocks multiple modes of TRPV1 receptor activation and effectively attenuates downstream consequences of receptor activity. ABT-102 is a novel and selective TRPV1 antagonist with pharmacological and functional properties that support its advancement into clinical studies.