The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Sep 2017
Race, Gender, and Genetic Polymorphism Contribute to Variability in Acetaminophen Pharmacokinetics, Metabolism, and Protein-Adduct Concentrations in Healthy African-American and European-American Volunteers.
Over 30 years ago, black Africans from Kenya and Ghana were shown to metabolize acetaminophen faster by glucuronidation and slower by oxidation compared with white Scottish Europeans. The objectives of this study were to determine whether similar differences exist between African-Americans and European-Americans, and to identify genetic polymorphisms that could explain these potential differences. Acetaminophen plasma pharmacokinetics and partial urinary metabolite clearances via glucuronidation, sulfation, and oxidation were determined in healthy African-Americans (18 men, 23 women) and European-Americans (34 men, 20 women) following a 1-g oral dose. ⋯ Finally, CYP2E1 *1D/*1D genotype African-Americans had lower oxidation clearance than *1C/*1D (by 42%; P = 0.041) and *1C/*1C (by 44%; P = 0.048) African-Americans. Consequently, African-Americans oxidize acetaminophen more slowly than European-Americans, which may be partially explained by the CYP2E1*1D polymorphism. UGT2B15*2 influences acetaminophen pharmacokinetics in both African-Americans and European-Americans.
-
J. Pharmacol. Exp. Ther. · Sep 2017
Optimization of Thermolytic Response to A1 Adenosine Receptor Agonists in Rats.
Cardiac arrest is a leading cause of death in the United States, and, currently, therapeutic hypothermia, now called targeted temperature management (TTM), is the only recent treatment modality proven to increase survival rates and reduce morbidity for this condition. Shivering and subsequent metabolic stress, however, limit application and benefit of TTM. Stimulating central nervous system A1 adenosine receptors (A1AR) inhibits shivering and nonshivering thermogenesis in rats and induces a hibernation-like response in hibernating species. ⋯ The partial agonist capadenoson (1.0 or 2.0 mg/kg, i.p.) produced a more consistent response, but the highest dose decreased Tb by only 1.6°C. To prevent overcooling after CHA, we studied continuous i.v. administration in combination with dynamic surface temperature control. Results show that after CHA administration control of surface temperature maintains desired target Tb better than dose or ambient temperature.
-
J. Pharmacol. Exp. Ther. · Aug 2017
TRV0109101, a G Protein-Biased Agonist of the µ-Opioid Receptor, Does Not Promote Opioid-Induced Mechanical Allodynia following Chronic Administration.
Prescription opioids are a mainstay in the treatment of acute moderate to severe pain. However, chronic use leads to a host of adverse consequences including tolerance and opioid-induced hyperalgesia (OIH), leading to more complex treatment regimens and diminished patient compliance. Patients with OIH paradoxically experience exaggerated nociceptive responses instead of pain reduction after chronic opioid usage. ⋯ In agreement with the β-arrestin knockout mouse studies, chronic administration of TRV0109101, a G protein-biased MOPR ligand and structural analog of oliceridine, did not promote the development of OIMA but did result in drug tolerance. Interestingly, following induction of OIMA by morphine or fentanyl, TRV0109101 was able to rapidly reverse allodynia. These observations establish a role for β-arrestins in the development of OIH, independent of tolerance, and suggest that the use of G protein-biased MOPR ligands, such as oliceridine and TRV0109101, may be an effective therapeutic avenue for managing chronic pain with reduced propensity for opioid-induced hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Aug 2017
Cannabinoid CB2 Agonist GW405833 Suppresses Inflammatory and Neuropathic Pain through a CB1 Mechanism that is Independent of CB2 Receptors in Mice.
GW405833, widely accepted as a cannabinoid receptor 2 (CB2) agonist, suppresses pathologic pain in preclinical models without the unwanted central side effects of cannabinoid receptor 1 (CB1) agonists; however, recent in vitro studies have suggested that GW405833 may also behave as a noncompetitive CB1 antagonist, suggesting that its pharmacology is more complex than initially appreciated. Here, we further investigated the pharmacologic specificity of in vivo antinociceptive actions of GW405833 in models of neuropathic (i.e., partial sciatic nerve ligation model) and inflammatory (i.e., complete Freund's adjuvant model) pain using CB2 and CB1 knockout (KO) mice, their respective wild-type (WT) mice, and both CB2 and CB1 antagonists. GW405833 (3, 10, and 30 mg/kg i.p.) dose dependently reversed established mechanical allodynia in both pain models in WT mice; however, the antiallodynic effects of GW405833 were fully preserved in CB2KO mice and absent in CB1KO mice. ⋯ GW405833 (30 mg/kg i.p.) was also inactive in a tetrad of tests measuring cardinal signs of CB1 activation. Additionally, unlike rimonabant (10 mg/kg i.p.), GW405833 (10 mg/kg, i.p.) did not act as a CB1 antagonist in vivo to precipitate withdrawal in mice treated chronically with Δ9-tetrahydrocannabinol. The present results suggest that the antiallodynic efficacy of GW405833 is CB1-dependent but does not seem to involve engagement of the CB1 receptor's orthosteric site.
-
J. Pharmacol. Exp. Ther. · Jul 2017
Preference for an Opioid/Benzodiazepine Mixture over an Opioid Alone Using a Concurrent Choice Procedure in Rhesus Monkeys.
Increased abuse of opioids is contributing to an escalation in overdose deaths. Benzodiazepines are frequently abused with opioids, possibly because they increase the potency and/or effectiveness of opioids to produce reinforcing effects. This study used a concurrent-choice procedure to determine whether monkeys would choose to self-administer a mixture of the opioid remifentanil and the benzodiazepine midazolam over remifentanil alone. ⋯ Combining 3.2 µg/kg/infusion midazolam with 0.32 µg/kg/infusion remifentanil increased responding for the mixture over 0.32 µg/kg/infusion remifentanil alone, although monkeys chose remifentanil alone over mixtures containing smaller doses of remifentanil. When 10 µg/kg/infusion midazolam was combined with 0.1 µg/kg/infusion remifentanil, monkeys chose the mixture over 0.32 µg/kg/infusion remifentanil alone. Thus, monkeys prefer some opioid/benzodiazepine mixtures to larger doses of the opioid alone, suggesting that opioid/benzodiazepine coabuse might be due to increased potency (and possibly effectiveness) of opioids to produce reinforcing effects.