The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Mar 2008
Comparative StudyThe butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency.
Butyrylcholinesterase (BChE) is an important enzyme for metabolism of ester drugs. Many humans have partial or complete BChE deficiency due to genetic variation. Our goal was to create a mouse model of BChE deficiency to allow testing of drug toxicity. ⋯ Challenge with 150 mg/kg pilocarpine i.p., a muscarinic agonist, or with 50 mg/kg butyrylcholine i.p., induced tonicclonic convulsions and death in BChE(-/-) mice. This suggests that butyrylcholine, like pilocarpine, binds to muscarinic receptors. In conclusion, the BChE(-/-) mouse is a suitable model for human BChE deficiency.
-
J. Pharmacol. Exp. Ther. · Mar 2008
Comparative StudyIncreased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn.
Glycine is an important inhibitory neurotransmitter in the spinal cord, but it also acts as a coagonist at the glycine site of N-methyl-d-aspartate (NMDA) receptors to potentiate nociceptive transmission. However, little is known about how increased nociceptive inflow alters synaptic glycine release in the spinal dorsal horn and its functional significance. In this study, we performed whole-cell recordings in rat lamina II neurons to record glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs). ⋯ Although capsaicin reduced the amplitude of evoked excitatory postsynaptic currents at high stimulation currents, it did not change the ratio of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/NMDA currents. This study provides the important new information that increased nociceptive inflow augments synaptic glycine release to spinal dorsal horn neurons through endogenous glutamate release. Potentiation of inhibitory glycinergic tone by stimulation of nociceptive primary afferents may function as a negative feedback mechanism to attenuate nociceptive transmission at the spinal level.
-
J. Pharmacol. Exp. Ther. · Mar 2008
Comparative Study2-Methoxymethyl-salvinorin B is a potent kappa opioid receptor agonist with longer lasting action in vivo than salvinorin A.
Salvinorin (Sal) A is a naturally occurring, selective kappa opioid receptor (KOPR) agonist with a short duration of action in vivo. Pharmacological properties of a C(2) derivative, 2-methoxymethyl (MOM)-Sal B, were characterized. MOM-Sal B bound to KOPR with high selectivity and displayed approximately 3-fold higher affinity than U50,488H [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate] and Sal A. ⋯ These latter two in vivo effects were blocked by norbinaltorphimine, indicating KOPR-mediated actions. Sal A at 10 mg/kg elicited neither antinociception nor hypothermia 30 min after administration to rats. In summary, MOM-Sal B is a potent and efficacious KOPR agonist with longer lasting in vivo effects than Sal A.
-
J. Pharmacol. Exp. Ther. · Mar 2008
Comparative StudyA selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats.
We have recently reported that systemic delivery of A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], a selective Na(v)1.8 sodium channel blocker, reduces behavioral measures of chronic pain. In the current study, the effects of A-803467 on evoked and spontaneous firing of wide dynamic range (WDR) neurons were measured in uninjured and rats with spinal nerve ligations (SNLs). Administration of A-803467 (10-30 mg/kg i.v.) reduced mechanically evoked (10-g von Frey hair) and spontaneous WDR neuronal activity in SNL rats. ⋯ In contrast, intraspinal (50-150 nmol/0.5 mul) injection of A-803467 decreased both evoked and spontaneous discharges of WDR neurons. Thus, Na(v)1.8 sodium channels on the cell bodies/axons within the L4 DRG as well as on peripheral and central terminals of primary afferent neurons regulate the inflow of low-intensity mechanical signals to spinal WDR neurons. However, Na(v)1.8 sodium channels on central terminals seem to be key to the modulation of spontaneous firing in SNL rats.
-
J. Pharmacol. Exp. Ther. · Feb 2008
Comparative StudyThe delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.
The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. ⋯ Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline monohydrochloride]. In conclusion, SNC80 enhanced the locomotor-stimulating effects of monoamine transporter ligands suggesting that delta-opioid receptor activation might alter the functional activity of monoamine transporters or presynaptic monoamine terminals.