The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Sep 2005
Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6.
Animal peptide toxins have become powerful tools to study structure-function relationships and physiological roles of voltage-activated Ca(2+) channels. In the present study, we investigated the effects of PnTx3-6, a neurotoxin purified from the venom of the spider Phoneutria nigriventer on cloned mammalian Ca(2+) channels expressed in human embryonic kidney 293 cells and endogenous Ca(2+) channels in N18 neuroblastoma cells. Whole-cell patch-clamp measurements indicate that PnTx3-6 reversibly inhibited L-(alpha(1C)/Ca(v)1.2), N-(alpha(1B)/Ca(v)2.2), P/Q-(alpha(1A)/Ca(v)2.1), and R-(alpha(1E)/Ca(v)2.3) type channels with varying potency (alpha(1B) > alpha(1E) > alpha(1A) > alpha(1C)) and IC(50) values of 122, 136, 263, and 607 nM, respectively. ⋯ In N18 cells, PnTx3-6 exhibited highest potency against N-type (conotoxin-GVIA-sensitive) current. In contrast to its effects on high voltage-activated Ca(2+) channels subtypes, application of 1 microM PnTx3-6 did not affect alpha(1G)/Ca(v)3.1 T-type Ca(2+) channels. Based on our study, we suggest that PnTx3-6 acts as a omega-toxin that targets high voltage-activated Ca(2+) channels, with a preference for the Ca(v)2 subfamily (N-, P/Q-, and R-types).
-
J. Pharmacol. Exp. Ther. · Aug 2005
Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.
Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. ⋯ From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.
-
J. Pharmacol. Exp. Ther. · Jul 2005
A novel neurotrophic agent, T-817MA [1-{3-[2-(1-benzothiophen-5-yl) ethoxy] propyl}-3-azetidinol maleate], attenuates amyloid-beta-induced neurotoxicity and promotes neurite outgrowth in rat cultured central nervous system neurons.
Progressive neuronal loss in Alzheimer's disease (AD) is considered to be a consequence of the neurotoxic properties of amyloid-beta peptides (A beta). T-817MA (1-{3-[2-(1-benzothiophen-5-yl) ethoxy] propyl}-3-azetidinol maleate) was screened as a candidate therapeutic agent for the treatment of AD based on its neuroprotective potency against A beta-induced neurotoxicity and its effect of enhancing axonal regeneration in the sciatic nerve axotomy model. The neuroprotective effect of T-817MA against A beta(1-42) or oxidative stress-induced neurotoxicity was assessed using a coculture of rat cortical neurons with glia. ⋯ T-817MA also increased the growth-associated protein 43 content in the reaggregation culture of cortical neurons. These findings suggest that T-817MA exerts neuroprotective effect and promotes neurite outgrowth in rat primary cultured neurons. Based on these neurotrophic features, T-817MA may have a potential for disease modification and be useful for patients with neurodegenerative diseases, such as AD.
-
J. Pharmacol. Exp. Ther. · Jul 2005
Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: in vivo study using gene-deficient mice.
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel localized on a subset of primary sensory neurons and can be activated by a wide range of stimuli. The present study investigated the role of this receptor in chronic arthritis evoked by complete Freund's adjuvant (CFA) using TRPV1 receptor gene-deleted (TRPV1-/-) mice and wild-type counterparts (TRPV1+/+). In TRPV1+/+ mice, CFA injected intraplantarly into the left hindpaw and the root of the tail induced swelling of the injected and contralateral paws up to 130 and 28%, respectively, measured by plethysmometry throughout 18 days. ⋯ The effect of indomethacin was markedly smaller in knockouts. In TRPV1+/+ animals, HOE-140, but not desArgHOE-140, inhibited arthritis, whereas in TRPV1-/- mice, HOE-140 produced limited effect. Thus, whereas bradykinin and lipoxygenase products seem to act exclusively via TRPV1 activation, prostanoids do not, or at least only partially, to enhance murine experimental arthritis and related hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Jul 2005
D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration.
Induction of the transcription factor deltaFosB was studied to examine neurochemical adaptations produced by repeated opiate administration. The mechanism of this induction was also investigated. The 35- to 37-kDa isoforms of deltaFosB, also referred to as the chronic Fras, were measured in the nucleus accumbens, caudate putamen, and frontal cortex of male Sprague-Dawley rats after either an acute injection of morphine or an escalating dosing schedule of morphine for 10 days. ⋯ Heroin administered twice daily for 10 days by an intermittent escalating dose schedule also induced deltaFosB in the caudate putamen, but not in the nucleus accumbens or frontal cortex. Daily pretreatment with the selective D1-like dopamine receptor antagonist SCH 23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] significantly blocked morphine-induced deltaFosB induction in the nucleus accumbens and caudate putamen, but not in the frontal cortex. These results demonstrate that morphine-induced deltaFosB up-regulation in the striatum, but not in the frontal cortex, is modulated by D1 dopamine receptors, suggesting that the mechanisms involved in the up-regulation of these chronic Fras by morphine is brain region-specific.