The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2005
Endogenous regulator of g protein signaling proteins reduce {mu}-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells.
Chronic exposure of cells to mu-opioid agonists leads to tolerance which can be measured by a reduced ability to activate signaling pathways in the cell. Cell signaling through inhibitory G proteins is negatively regulated by RGS (regulator of G protein signaling) proteins. Here we examine the hypothesis that the GTPase accelerating activity of RGS proteins, by altering the lifetime of Galpha and Gbetagamma, plays a role in the development of cellular tolerance to mu-opioids. ⋯ Exposure to high concentrations of morphine or the peptidic mu-opioid agonist DAMGO led to a tolerance to inhibit adenylyl cyclase activity in both cell types with a rapid (30 min) and a slower component. Using a submaximal concentration of DAMGO to induce a reduced level of tolerance, a shift in the concentration-effect curve for DAMGO to inhibit adenylyl cyclase activity was seen in the cells expressing RGS-insensitive Galpha(o), but not in the cells expressing RGS-sensitive Galpha(o), which can be partly explained by an increased supersensitization of the adenylyl cyclase response. The results show that RGS proteins endogenously expressed in C6 cells reduce agonist-induced mu-opioid receptor desensitization, down-regulation, and sensitivity to tolerance to inhibit adenylyl cyclase activity.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.
We characterized the effects of the volatile anesthetic isoflurane on the ion currents that contribute to the action potential (AP) in isolated rat neurohypophysial (NHP) nerve terminals using patch-clamp electrophysiology. Mean resting membrane potential and AP amplitude were -62.3 +/- 4.1 and 69.2 +/- 2.9 mV, respectively, in NHP terminals. Two components of outward K(+) current (I(K)) were identified in voltage-clamp recordings: a transient I(K) and a sustained I(K) with minimal inactivation. ⋯ The isoflurane IC(50) for peak I(K) was 0.83 mM and for sustained I(K) was 0.73 mM, with no effect on the voltage dependence of activation. The results indicate that multiple voltage-gated ion channels (Na(+) > K(+) > Ca(2+)) in NHP terminals, although not typical central nervous system terminals, are inhibited by the volatile general anesthetic isoflurane. The net inhibitory effects of volatile anesthetics on nerve terminal action potentials and excitability result from integrated actions on multiple voltage-gated currents.
-
J. Pharmacol. Exp. Ther. · Feb 2005
{beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents.
Deposition of beta-amyloid peptide (Abeta) and hyperphosphorylation of the tau protein are associated with neuronal dysfunction and cell death in Alzheimer's disease. Although the relationship between these two processes is not yet understood, studies have shown that both in vitro and in vivo exposure of neurons to Abeta leads to tau hyperphosphorylation and neuronal dystrophy. We previously reported that the microtubule-stabilizing drug paclitaxel (Taxol) protects primary neurons against toxicity induced by the Abeta(25-35) peptide. ⋯ Other taxanes and three structurally diverse microtubule-stabilizing compounds also significantly increased survival of Abeta-treated cultures. At concentrations below 100 nM, the drugs that protected the neurons did not produce detectable toxicity when added to the cultures alone. Although multiple mechanisms are likely to contribute to the neuronal cell death induced by oligomeric or fibrillar forms of Abeta, low concentrations of drugs that preserve the integrity of the cytoskeletal network may help neurons survive the toxic cascades initiated by these peptides.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.
Opioid analgesics with restricted access to the central nervous system represent a new approach to the treatment of severe pain with an improved safety profile. The objective of this study was to investigate the peripheral and central components of the antinociceptive actions of the 6-amino acid conjugates (glycine, alanine, and phenylalanine) of 14-O-methyloxymorphone. Their antinociceptive activities were compared with those of the centrally penetrating mu-opioid agonists morphine, fentanyl, and 14-O-methyloxymorphone. ⋯ Although morphine exerts its analgesic effects by central and peripheral mechanisms, the investigated new opioids interact primarily with peripheral opioid receptors after s.c. administration. The present data indicate that the 6-amino acid conjugates of 14-O-methyloxymorphone have limited access to the central nervous system and can mediate antinociception at peripheral sites. Also, they might find clinical application when the central actions of opioids are unwanted.
-
J. Pharmacol. Exp. Ther. · Feb 2005
An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance.
We determined whether the i.t. administration of an 18-mer phosphodiester antisense oligodeoxynucleotide (ODN) that reduces the expression of the rat NMDAR1 subunit of the N-methyl-d-aspartate (NMDA) receptor would affect nociceptive behaviors and prevent the development of morphine tolerance. Rats received 5 microl of i.t. saline, 30 nM antisense, or mismatch ODN twice a day for 5 days (NMDA-induced nociception, NMDA-induced thermal hyperalgesia, NR1 mRNA, and ligand binding studies) or for 3 days (formalin study). For the tolerance study, 5 days of ODNs or saline were followed by 3 days of concurrent administration of ODNs or saline (twice a day) and i.t. morphine (three times a day). ⋯ The coadministration of antisense with increasing doses of i.t. morphine for 3 days attenuates the development of morphine tolerance. These results demonstrate that an in vivo antisense targeting of the NMDAR1 subunit results in antihyperalgesic effects and a partial blockade of spinal morphine tolerance. They provide additional support for the critical role of the NMDA receptor in these forms of spinal nociception and in the development of morphine tolerance and suggest the potential therapeutic utility of this approach.