J Neuroeng Rehabil
-
Randomized Controlled Trial
Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis.
Motor impairment is a major consequence of spinal cord injury (SCI). Earlier studies have shown that robotic gait orthosis (e.g., Lokomat) can improve an SCI individual's walking capacity. However, little is known about the differential responses among different individuals with SCI. The present longitudinal study sought to characterize the distinct recovery patterns of gait impairment for SCI subjects receiving Lokomat training, and to identify significant predictors for these patterns. ⋯ Our findings demonstrate that subjects responded to Lokomat training non-uniformly, and should potentially be grouped based on their likely recovery patterns using objective criteria. Further, we found that the subject's ankle torque can predict whether he/she would benefit most from Lokomat training prior to the therapy. These findings are clinically significant as they can help individualize therapeutic programs that maximize patient recovery while minimizing unnecessary efforts and costs.
-
There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. ⋯ Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance.
-
Randomized Controlled Trial
Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.
In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. ⋯ The improvements of the kinematic and kinetic parameters of the ankle voluntary movement, and their correlation with the functional assessments, support the therapeutic effect of robotic-assisted locomotor training on motor impairment in chronic iSCI.
-
Randomized Controlled Trial
Investigating the role of neuropathic pain relief in decreasing gait variability in diabetes mellitus patients with neuropathic pain: a randomized, double-blind crossover trial.
Subjects with diabetes mellitus (DM) develop gait dysfunction contributing to falls, reluctance to perform activities and injuries. Neuropathic pain (NeP) related to diabetic peripheral neuropathy (DPN) is associated with increased gait variability that may contribute to gait dysfunction. We used a portable device (GaitMeter™) and related gait and balance measures to measure gait parameters in painful DPN (PDPN) subjects prior to and during analgesia. Our hypothesis was that PDPN subjects would have decreased gait step variability when receiving pharmacological relief of NeP. ⋯ Analgesia did not decrease gait variability in PDPN patients, and in fact, increased gait variability was seen during pregabalin treatment. Other important relationships of gait dysfunction with PDPN should be sought.
-
Randomized Controlled Trial
Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance.
Task-specific locomotor training has been promoted to improve walking-related outcome after incomplete spinal cord injury (iSCI). However, there is also evidence that lower extremity strength training might lead to such improvements. The aim of this randomized cross-over pilot study was to compare changes in a broad spectrum of walking-related outcome measures and pain between robot-assisted gait training (RAGT) and strength training in patients with chronic iSCI, who depended on walking assistance. We hypothesized that task-specific locomotor training would result in better improvements compared to strength training. ⋯ In patients with chronic iSCI dependent on walking assistance, RAGT was not more effective in improving walking-related outcome compared to lower extremity strength training. However, the low sample size limits generalizability and precision of data interpretation.